
Available online at www.refaad.com
Gen.Lett. Math., 12 (3) (2022), 105-115

Research Article

General Letters in Mathematics (GLM)
Journal Homepage: https://www.refaad.com/Journal/Index/1

ISSN: 2519-9277 (Online) 2519-9269 (Print)

Schultz and Modified Schultz Polynomials of Chain from
Alternating Hexagonal and Quadruple Rings

Maha Waleed Abdulqadera,∗, Ahmed Mohammed Alib, Mahmood Median Abdullahc

aCollege of sciences-department of mathematics Duhok University -Duhok /Iraq.
bCollege of Computer Sciences and Mathematics Mosul University – Mosul / Iraq.
cThe General Directorate of Education of Nineveh – Mosul / Iraq

Abstract

Many topological indices are closely related to chemical and physical properties, especially types of chemical structures
that are characterized by the forms of chains of special chemical structures including hexacyclic, pentagonal, and tetracyclic
structures. In 1947, the first chemist to find a relationship between topological index is called the Wiener index which was
named after the chemical scientist Harold Wiener. He introduced the Wiener index to find a relationship between physic and
chemical properties of chemical structures of molecular graphs. Then, the Hosoya polynomial in chemistry was found by Haruo
Hosoya in 1988, through which the Wiener index was found, by finding the derivative of this polynomial and then substituting
for the value of the variable with one. Therefore, our aim in this paper was to talk about other topological indices called
Schultz and modified Schultz indices with mentioning their polynomials and to find general formulas for each of them for an
alternating chain of quaternary and hexagonal rings, which have some applications in chemistry. Also, a program was made
using the Mathematica program to find the polynomials, indices, and sketches of them with respect to the Schultz distance. The
first researcher to talk about the Schultz index was Harry Schultz in 1989 and the first to talk about the modified Schultz index
were Sandi Klavžar and Ivan Gutman in 1997. Finally, many types of research are found Schultz and modified Schultz to Lots
of graphs and operations defined on it.
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1. Introduction

A simple graph that does not contain loops or and define the connected is graph Gp it is the graph
that has a path between any two vertices u,v ∈ V(Gp) and has V(Gp) at least p− 1 of vertices, the null
graph which consists from p of vertices without any edges which are denoted by Np. In this paper all
the graphs are simple, connected, and not null. The number of vertices in graph G is called order a graph
G, and the size of graph G is number of edges in graph G [1]. The distance between any two vertices u,v
in a connected graph Gp is defined as the shortest path between them, which is denoted by d(u, v) The
diameter in a connected graph Gp is a length of the longest path which joins between u and v in Gp ,
we denoted to the diameter by diam Gp, the path graph has the largest diameter among graphs and the
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complete graph has the smallest diameter in graphs. The number of all unordered pairs in a connected
graph is Gp is 1/2 p(p+1) by symbol, we can write |dGp

(u, v)| = 1
2p(p+1) .We denoted by degv to the

vertex degree which is referred to the number of edges that lies on vertex v [1].

Harold Wiener introduced topological index biology and chemistry in 1947, the Wiener index is de-
fined as [2]:

W(Gp) =
∑

{u,v}⊆V(Gp)

d(u, v),

The Japanese scientist Hosoya introduced his polynomial in 1988 and defied it as follows [3]:

H(Gp; x) =
∑

{u,v}⊆V(Gp)

xd(u,v),

Also, he defined Hosoya polynomial by Wiener polynomial.
Now, we will define Shultz and modified Shultz polynomials. Shultz introduced his index in 1989 and
defined it as follows [4]:

Sc(Gp) =
∑

{u,v}⊆V(Gp)

(degu+ degv)d(u, v),

where degu and degv are degrees of vertices u and v.
After that in 1997, for all Klavžar and Gutman together, the modified Shultz index was introduced and
defined as follows [5]:

Sc∗(Gp) =
∑

{u,v}⊆V(Gp)

(degu.degv)d(u, v),

We can write the definition of two Shultz and modified Shultz polynomials respectively as:

Sc(Gp; x) =
∑

{u,v}⊆V(Gp;x)

(degu+ degv)xd(u,v),

Sc∗(Gp; x) =
∑

{u,v}⊆V(Gp;x)

(degu.degv)xd(u,v),

In addition to that we can conclude that the Schultz and modified Schultz indices are from Schultz and
modified Schultz polynomials by the derivativeSc(G; x) and Sc∗(G; x) respectively with respect to x at
x = 1, that is:

Sc(G; x) =
d

dx
(Sc(G; x))|x=1 and Sc∗(G; x) =

d

dx
(Sc∗(G; x))|x=1.

We focus in this paper on Shultz and modified Shultz polynomials for hexagonal – quadruple alternating
chain graphs. It is of necessity to mention that there are many studies on polynomials and indices
furthermore the Schultz and modified Schultz, ([6-10]) and also, there are studies on the application of it
([11-16]).

2. Schultz and Modified Schultz Polynomials for CHQ, CHQH and CQHQ Graphs

In this section, we give three types of different chemical structures in chemical see Figure 1. Some
properties have studied Schultz and modified Schultz polynomials that are presented and the Schultz and
modified Schultz found.
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Figure 1: Three types of Different Chemical Structures.

2.1. Some Properties of Three types of Different Chemical Structures
1. Chain hexagonal - quadruple rings CHQ:

The order is 2p, the size is (8p−5)
3 , the diameter is p, the number of square rings and hexagonal rings

are p−1
3 , where p=3n+1, n ∈ N− {0}.

2. Chain hexagonal - quadruple rings CHQH:
The order is 2p, the size is (8p−6)

3 , the diameter is p, the number of (p−3)
3 square rings and hexagonal

rings are p
3 , where p=3n, n ∈ N− {0, 1}.

3. Chain hexagonal - quadruple rings CQHQ:
The order is 2p, the size is (8p−5)

3 , the diameter is p, the number of square rings (p+1)
3 and hexagonal

rings are p−2
3 , where p=3n+2, n ∈ N− {0}.

We will now present the three proofs for the different types of chemical structures with respect to Schultz
and modified Schultz polynomials and then find the indices of it using derivation.

Theorem 2.1. For all p > 8, then we have :

1.

Sc(CHQ; x) =
2
3
(22p− 25)x+

2
3
(32p− 59)x2 +

2
3
(34p− 91)x3 +

4
3

(p−4)
3∑

i=1

(16p− 48i− 13)x3i+1

+
2
3

p−4
3∑

i=1

(32p− 96i− 59)x3i+2 +
2
3

p−4
3∑

i=1

(32p− 96i− 89)x3i+3 + 8xp.

(2.1)

2.

Sc∗(CHQ; x) =(20p− 31)x+ 4(7p− 15)x2 + 30(p− 3)x3 +
2
3

(p−4)
3∑

i=1

(43p− 129i− 49)x3i+1

+ 4

p−4
3∑

i=1

(7p− 21i− 15)x3i+2 +
2
3

p−7
3∑

i=1

(43p− 129i− 133)x3i+3 + 28xp−1 + 8xp.

(2.2)

Proof. For all two vertices u, v ∈ V(CHQ), there is d(u, v) = k, 1 6 k 6 p, and obviously
∑p

i=1 |Di| =
p(2p− 1). Then there are seven parts:
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A. If d(u,v)=1, then |Di| =
8p−5

3 = q and then we have seven subparts of it:

A.1. |D1(2, 2)| = |{(u1, v1), (up, vp), (u1,u2), (v1, v2)}| = 4.

A.2. |D1(2, 3)| = |{(u3i−1,u3i), (v3i−1, v3i) : 1 6 i 6 p−1
3 }| = 2(p−1

3 ).

A.3. |D1(2, 3)| = |{(u3i+2,u3i+1), (v3i+2, v3i+1) : 1 6 i 6 p−1
3 }| = 2(p−4

3 ).

A.4. |D1(2, 3)| = |{(up,up−1), (vp, vp−1)}| = 2.

A.5. |D1(3, 3)| = |{(u3i, v3i), (u3i+1, v3i+1) : 1 6 i 6 p−4
3 }| = 2(p−4

3 ).

A.6. |D1(3, 3)| = |{(u3i,u3i+1), (v3i, v3i+1) : 1 6 i 6 p−4
3 }| = 2(p−4

3 )

A.7. |D1(3, 3)| = |{(up−1, vp−1)}| = 1.

B. If d(u,v)=k, k=3i-1, i = 1, 2, ..., p−2
3 then we have five subparts of it:

B.1. |Dk(2, 2)| = |{(up−k,up), (vp−k, vp), (u1, vk), (v1,uk)}| = 4.

B.2. |Dk(2, 3)| = |{(u3i−1,u3i+k−1), (v3i−1, v3i+1), (u3i+k,u3i), (v3i+k, v3i) : 1 6 i 6 p−k−2
3 }| = 2(p−

k− 2).

B.3. |Dk(2, 3)| = |{(u3i−1,u3i+k−2), (v3i−1, v3i+k−2) : 1 6 i 6 p−k+1
3 }| = 2(p−k+1

3 )

B.4. |Dk(2, 3)| = |{(u1,uk+1), (v1, vk+1), (up, vp−k+1), (vp,up−k+1)}| = 4.

B.5. |Dk(3, 3)| = |{(u3i+1,u3i+k+1), (v3i+1, v3i+k+1), (u3i, v3i+k−1), (v3i,u3i+k−1) : 1 6 i 6 p−k−2
3 }| =

4(p−k−2
3 ).

Then, |Dk| = 2(2p− 2k+ 1),k = 3i− 1, i = 1, 2, . . . , p−2
3 .

C. If d(u,v)=k, k=3i, i = 1, 2, ..., p−4
3 then we have six subparts of it

C.1. |Dk(2, 2)| = |{(u3i−1,u3i+k−1), (v3i−1, v3i+k−1) : 1 6 i 6 p−k−1
3 }| = 2(p−k−1

3 )

C.2. |Dk(2, 3)| = |{(up−k+1, vp), (vp−k+1,up)}| = 2.

C.3. |Dk(2, 3)| = |{(u3i−1, v3i+k−2), (v3i−1,u3i+k−2), (v3i+k−1,u3i), (u3i+k−1, v3i) : 1 6 i 6 p−k−1
3 }| =

4(p−k−1
3 )

C.4. |Dk(2, 3)| = |{(u1,u1+k), (v1, v1+k), (up,up−k), (vp, vp−k), (u1, vk), (v1,uk)}| = 6.

C.5. |Dk(3, 3)| = |{(u3i,u3i+k), (v3i, v3i+k), (u3i+1, v3i+k), (v3i+1,u3i+k) : 1 6 i 6 p−k−1
3 }| = 4(p−k−1

3 ).

C.6. |Dk(3, 3)| = |{(u3i+1,u3i+k+1), (v3i+1, v3i+k+1) : 1 6 i 6 p−k−4
3 }| = 2(p−k−4

3 ).
when k=3, we have another case:

C.7. |Dk(2, 2)| = |{(u3i−1, v3i−1) : 1 6 p−1
3 } = p−1

3 Then, |Dk| = 2(2p − 2k + 1),k = 3i − 1, i =

1, 2, . . . , p−4
3 and when |D3| =

13p−31
3 .

D. If d(u,v)=k, k=3i+1, i = 1, 2, . . . , p−4
3 and we have seven subparts of it:

D.1. |Dk(2, 2)| = |{(u3i−1, v3i+k), (v3i−1,u3i+k−2) : 1 6 i 6 p−k
3 }| = 2(p−k

3 ).

D.2. |Dk(2, 2)| = |{(u1,u1+k), (v1, v1+k)}| = 2.

D.3. |Dk(2, 3)| = |{(u3i−1,u3i+k−1), (v3i−1, v3i+k−1) : 1 6 i 6 p−k
3 }| = 2(p−k

3 ).

D.4. |Dk(2, 3)| = |{(u3i+k+1,u3i+1), (v3i+k+1, v3i+1) : 1 6 i 6 p−k−3
3 }| = 2(p−k−3

3 ).

D.5. |Dk(2, 3)| = |{(u1, vk), (vp,up−k+1), (v1,uk), (up, vp−k+1), (vp, vp−k), (up,up−k)}| = 6.

D.6. |Dk(3, 3)| = |{(u3i,u3i+k), (v3i, v3i+k), (u3i+1, v3i+k), (v3i+1,u3i+k) : 1 6 i 6 p−k−3
3 }| = 4(p−k−3

3 ).
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D.7. |Dk(3, 3)| = |{(u3i, v3i+k−1), (v3i, v3i+k−1) : 1 6 i 6 p−k
3 }| = 2(p−k

3 ).

Then, |Dk| = 2(2p− 2k+ 1), k=3i+1, i = 1, 2, . . . , (p− 4)/3.

E. If d(u,v)=p-2, and we have two subparts of it:

E.1. |Dp−2(2, 2)| = |{(u2,up), (v2, vp), (u1, vp−2), (v1,up−2)}| = 4.

E.2. |Dp−2(2, 3)| = {(u1,up−1), (v1, vp−1), (u2, vp−1), (up, v3), (v2,up−1), (vp,u3)}| = 6.

Then,|Dp−2| = 10.

F. If d(u,v)=p-1, and we have two subparts of it:

F.1. |Dp−1(2, 2)| = |{(u1,up), (v1, vp), (u2, vp), (v2,up)}| = 4.

F.2. |Dp−1(2, 3)| = |{(u1, vp−1), (v1,up−1)}| = 2.

Then, |Dp−1| = 6.

G. If d(u,v)=p,and we have one subpart of it: |Dp(2, 2)| = |{(u1, vp), (v1,up)}| = 2. Then, |Dp| = 2.

From A – G and definitions Schultz and modified Schultz, we obtain (2.1) and (2.2) respectively

Theorem 2.2. For all p > 9, we have:

1.

Sc(CHQH; x) =
4
3
(11p− 15)x+

8
3
(8p− 15)x2 +

4
3
(17p− 45)x3 +

4
3

p−3
3∑

i=1

(16p− 48i− 15)x3i+1

+
8
3

p−3
3∑

i=1

(8p− 24i− 15)x3i+2 +
4
3

p−6
3∑

i=1

(16p− 48i− 45)x3i+3 + 8xp.

2.

Sc∗(CHQH; x) =4(5p− 9)x+ 2(14p− 31)x2 + 2(15p− 46)x3 +
2
3

p−3
3∑

i=1

(43p− 129i− 57)x3i+1

+ 2

p−6
3∑

i=1

(14p− 42i− 31)x3i+2 +
2
3

p−6
3∑

i=1

(43p− 129i− 138)x3i+3 + 24xp−1 + 8xp.

Proof. From Theorem 2.1, we have Sc(CHQH; x) and Sc∗(CHQH; x) by adding the new vertices w1,w2,w3,w4
and edges vpw1,w1w2,w2w3,w3w4,w4up to the graph CHQ and replace all p by p-2. see Figure 1.(b).

Let h(k) be the representation the extra degrees of vertices vp,w1,w2,w3,w4,up with respect to dis-
tancing part k, that is h(k) = (degy+ degz)d(y, z) such that d(y, z) = k, for 1 6 k 6 p,y, z ∈ V(CHQH).
From Theorem 2.1, we have:

Coff((Sc(CHQH; x), 1) = Coff((Sc(CHQ; x), 1) + h(1)

=
2
3
(22(p− 2) − 25) + 26

=
4
3
(11p− 15).
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Coff((Sc(CHQH; x), 2) = Coff((Sc(CHQ; x), 2) + h(2)

=
2
3
(32(p− 2) − 59) + 42

=
8
3
(8p− 15).

Coff((Sc(CHQH; x), 3) = Coff((Sc(CHQ; x), 3) + h(3)

=
2
3
(34(p− 2) − 91) + 46

=
4
3
(17p− 45).

Coff((Sc(CHQH; x), 3i+ 1) = Coff((Sc(CHQ; x), 3i+ 1) + h(3i+ 1)

=
4
3
(16(p− 2) − 48i− 13) + 40

=
4
3
(16p− 48i− 15).

Coff((Sc(CHQH; x), 3i+ 2) = Coff((Sc(CHQ; x), 3i+ 2) + h(3i+ 2)

=
2
3
(32(p− 2) − 96i− 59) + 42

=
8
3
(16p− 24i− 15).

Coff((Sc(CHQH; x), 3i+ 3) = Coff((Sc(CHQ; x), 3i+ 3) + h(3i+ 3)

=
2
3
(32(p− 2) − 96i− 89) + 42

=
4
3
(16p− 48i− 45).

Directly from Figure 1.(b), we have: Coff((Sc(CHQH;x),p)=8.
Now, we find the modified Schultz polynomial of the graph CHQH in the same way find the Schultz

polynomial of the graph CHQH from Theorem 2.1.
Let h∗(k) be the representation the extra degrees of vertices vp,w1,w2,w3,w4,up with respect to

distancing part k, that is h∗(k) = (degy.degz)d(y, z) such that d(y,z)=k, for 1 6 k 6 p,y, z ∈ V(CHQH).
From Theorem 2.1, we have:

Coff(Sc∗(CHSH; x), 1) = Coff(Sc∗(CHS; x), 1) + h∗(1)
= (20(p− 2) − 31) + 35
= 4(5p− 9).

Coff(Sc∗(CHQH; x), 2) = Coff(Sc∗(CHQ; x), 2) + h∗(2)
= 4(7(p− 2) − 15) + 54
= 2(14p− 31).

Coff(Sc∗(CHQH; x), 3) = Coff(Sc∗(CHQ; x), 3) + h∗(3)
= 30(p− 2 − 3) + 58
= 2(15p− 46).

Coff(Sc∗(CHQH; x), 3i+ 1) = Coff(Sc∗(CHQ; x), 3i+ 1) + h∗(3i+ 1)

=
2
3
(43(p− 2) − 129i− 49) + 52

=
2
3
(43p− 129i− 57).
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Coff(Sc∗(CHQH; x), 3i+ 2) = Coff(Sc∗(CHQ; x), 3i+ 2) + h∗(3i+ 2)
= 4(7(p− 2) − 21i− 15) + 54
= 2(14p− 42i− 31).

Coff(Sc∗(CHQH; x), 3i+ 3) = Coff(Sc∗(CHQ; x), 3i+ 3) + h∗(k)

=
2
3
(43(p− 2) − 129i− 133) + 54

=
2
3
(43p− 129i− 138).

Finally, directly from Figure 1. (b), we have:

Coff(Sc∗(CHQH; x),p− 1) = 24 and Coff(Sc∗(CHQH; x),p) = 8.

Theorem 2.3. For all p > 8, we have:

1.

Sc(CHQH; x) =
4
3
(11p− 1)x+

4
3
(16p− 29)x2 +

2
3
(43p− 101)x3 +

4
3

p−4
3∑

i=1

(16p− 48i− 11)x3i+1

+
2
3

p−4
3∑

i=1

(32p− 96i− 58)x3i+2 +
16
3

p−4
3∑

i=1

(4p− 12i− 11)x3i+3 + 8xp.

2.

Sc∗(CQHQ; x) =2(10p− 3)x+ 2(14p− 29)x2 + 2(15p− 44)x3 +
2
3

p−4
3∑

i=1

(43p− 129i− 41)x3i+1

+ 2

p−4
3∑

i=1

(14p− 42i− 29)x3i+2 +
2
3

p−7
3∑

i=1

(43p− 129i− 133)x3i+3 + 32xp−1 + 8xp.

Proof. In the same method Theorem 2.2, see Figure 1.(c), we find Schultz and modified Schultz polyno-
mials for the graph CQHQ.

3. Schultz and Modified Schultz Indices for CHQ, CHQH and CQHQ Graphs

In this section, we find the indices of Schultz and modified Schultz for some chemical structures
mentioned earlier

Corollary 3.1. For all p > 8, then we have :
1. Sc(CHQ) = 2

27(48p3 + 27p2 + 482p+ 52).
2. Sc∗(CHQ) = 1

27(128p3 − 48p2 + 72p− 125).

Proof. 1. From definition Schultz index, we obtain :

Sc(CHQ) =
2
3
(22p− 25) +

4
3
(32p− 59) +

6
3
(34p− 91)

+
4
3

p−4
3∑

i=1

(3i+ 1)(16p− 48i− 13) +
2
3

p−4
3∑

i=1

(3i+ 2)(32p− 96i− 59)

+
2
3

p−4
3∑

i=1

(3i+ 3)(32p− 96i− 89) + 8p.
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=
8
3
(50p− 104) +

2
27

(16p3 + 9p2 − 363p+ 384)

+
1
27

(32p3 + 15p2 − 107p+ 1996) +
1
27

(32p3 + 21p2 − 1803p+ 4828)

=
2
27

(48p3 + 27p2 + 482p+ 52).

2. From definition modified Schultz index, we obtain :

Sc∗(CHQ) = (20p− 31) + 8(7p− 15) + 90(p− 3) +
2
3

p−4
3∑

i=1

(3i+ 1)(43p− 129i− 49)

+ 4

p−4
3∑

i=1

(3i+ 2)(7p− 21i− 15) +
2
3

p−7
3∑

i=1

(3i+ 3)(43p− 129i− 133) + 28(p− 1) + 8p.

= 202p− 449 +
1
27

(43p3 − 18p2 − 849p+ 932)

+
2
9
(7p3 − 3p2 − 228p+ 512) +

1
27

(43p3 − 12p2 − 3165p+ 7994)

=
1

27
(128p3 − 48p2 + 72p− 125).

Corollary 3.2. For all p > 9, we have:

1. Sc(CHQH) = 4
9p

2(8p+ 3).
2. Sc∗(CHQH) = 4

27p(32p2 − 24p+ 27).

Proof. 1. From definition Schultz index, we get :

Sc(CHQH) =
4
3
(11p− 15) +

16
3
(8p− 15) +

12
3
(17p− 45) +

4
3

p−3
3∑

i=1

(3i+ 1)(16p− 48i− 15)

+
8
3

p−3
3∑

i=1

(3i+ 2)(8p− 24i− 15) +
4
3

p−6
3∑

i=1

(3i+ 3)(16p− 48i− 45) + 8p.

=
40
3
(10p− 21) +

2
27

(16p3 + 3p2 − 243p+ 270)

+
4
27

(8p3 + 3p2 − 261p+ 540) +
2

27
(16p3 + 9p2 − 1035p+ 2430)

=
4
9
p2(8p+ 3).

2. From definition modified Schultz index, we get :

Sc∗(CHQH) = 4(5p− 9) + 4(14p− 31) + 6(15p− 46) +
2
3

p−3
3∑

i=1

(3i+ 1)(43p− 129i− 57)

+ 2

p−6
3∑

i=1

(3i+ 2)(14p− 42i− 31) +
2
3

p−6
3∑

i=1

(3i+ 3)(43p− 129i− 138) + 24(p− 1) + 8p.
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= 2(99p− 230) +
1
27

(43p3 − 42p2 − 603p+ 1026)

+
1
9
(14p3 − 9p2 − 669p+ 1314) +

1
27

(43p3 − 27p2 − 2628p+ 7452)

=
4
27

p(32p2 − 24p+ 27).

Corollary 3.3. For all p > 8, we have:

1. Sc(CQHQ) = 2
9(16p3 + 12p2 + 75p− 55).

2. Sc∗(CQHQ; x) = 1
27(128p3 − 15p2 + 99p+ 508).

Proof. 1. From definition Schultz index, we have:

Sc(CQHQ) =
4
3
(11p− 1) +

8
3
(16p− 29) +

6
3
(43p− 101) +

4
3

p−4
3∑

i=1

(3i+ 1)(16p− 48i− 11)

+
2
3

p−4
3∑

i=1

(3i+ 2)(32p− 96i− 58) +
16
3

p−4
3∑

i=1

(3i+ 3)(4p− 12i− 11) + 8p

=
2
3
(227p− 421) +

2
27

(16p3 + 15p2 − 381p+ 260)

+
2
27

(16p3 + 9p2 − 537p+ 980) +
8
27

(4p3 + 3p2 − 225p+ 596)

=
2
9
(16p3 + 12p2 + 75p− 55).

2. From definition modified Schultz index, we have:

Sc∗(CQHQ) = 2(10p− 3) + 4(14p− 29) + 6(15p− 44) +
2
3

p−4
3∑

i=1

(3i+ 1)(43p− 129i− 41)

+ 2

p−4
3∑

i=1

(3i+ 2)(14p− 42i− 29) +
2
3

p−7
3∑

i=1

(3i+ 3)(43p− 129i− 133) + 32(p− 1) + 8p

= 2(103p− 209) +
1

27
(43p3 + 6p2 − 921p+ 836)

+
1
9
(14p3 − 3p2 − 459p+ 988) +

1
27

(43p3 − 12p2 − 3165p+ 7994)

=
1

27
(128p3 − 15p2 + 99p+ 508).

4. Applications

In this section, we obtain the Schultz and modified Schultz for all polynomials and indices for chain
hexagonal - quadruple rings(CHQ), chain hexagonal - quadruple - hexagonal rings (CHQH) and chain
quadruple - hexagonal - quadruple rings (CQHQ). In the following part, we give algorithm to graphic
structures of two dimensions for three types chains: CHQ, CHQH and CQHQ, and then finding the
polynomials and indices with respect to Schultz
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4.1. Algorithm
• Start .

• Enter chain.

• Find adjacent , degree and distance matrices.

• Use two dimension to graphic commands in mathematica programming.

• Determine the diameter of any type of chain.

• Finding the Schultz and modified Schultz polynomial , and then find the indices if them.

• end.

4.2. Examples
We take three examples for rings chain: Hexagonal - Quadruple, Hexagonal - Quadruple - Hexagonal

and Quadruple - Hexagonal – Quadruple.

Conclusion 4.1. It is possible to notice that the results we obtained can be found, some of which depend
on other formulas, for example, finding Schultz and modified Schultz polynomials for CHQH and CQHQ
structures and its indices dependent on Schultz and modified Schultz polynomials for CHS and its index.
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