A New Parameter Conjugate Gradient Method Based on Three Terms Unconstrained Optimization

Hussein Ageel Khatab 1 and Salah Gazi Shareef 2

1,2 Department of Mathematics, Faculty of Science, University of Zakho, Kurdistan Region, Iraq

1 husseinkhatab632@gmail.com, 2 salah.gazi2014@gmail.com

Abstract. In this paper, we suggest a new conjugate gradient method for solving nonlinear unconstrained optimization problems by using three term conjugate gradient method, We give a descent condition and the sufficient descent condition of the suggested method.

Keywords: Unconstrained Optimization; Conjugate Gradient Method; Descent Condition; Three Term Conjugate Gradient Method

1. Introduction

We consider the unconstrained optimization problem:

\[
\text{Min } f(x), x \in \mathbb{R}^n
\]

where \(f: \mathbb{R}^n \rightarrow \mathbb{R} \) is a real-valued, continuously differentiable function.

A nonlinear conjugate gradient method generates a sequence \(\{x_k\} \), \(k \geq 1 \), starting from an initial guess \(x_1 \in \mathbb{R}^n \), using the recurrence

\[
x_{k+1} = x_k + \alpha_k d_k
\]

Or \(v_k = \alpha_k d_k \)

Where, \(v_k = x_{k+1} - x_k \)

The positive step size \(\alpha_k \) is obtained by some line search, and \(d_k \) is a search direction, normally the search direction at the first iteration is the steepest descent direction, namely \(\alpha_1 = -g_1 \) and the other search directions can be defined as:

\[
d_{k+1} = -g_{k+1} + \beta_k d_k
\]

Where \(g_k = \nabla f(x_k) \) and \(\beta_k \) is a scalar. There are many formulas for \(\beta_k \), for example, Hestenes-Stiefel (HS) [8], Conjugate descent (CD) [10], Polak-Ribiére-Polyak (PRP) [1], Dai and Yuan (DY) [11], (DPRP) [2], RMIL [9] and \(\beta_k^1 \) [12], these formulas are as follows:

\[
\beta_k^{HS} = \frac{g_k^T (g_{k+1} - g_k)}{d_k^T (g_{k+1} - g_k)}
\]

(1.4)

\[
\beta_k^{CD} = -\frac{1}{d_k^T g_k}
\]

(1.5)

\[
\beta_k^{PRP} = \frac{g_k^T (g_{k+1} - g_k)}{\|g_k\|^2}
\]

(1.6)

\[
\beta_k^{DY} = \frac{\|g_k\|^2}{d_k^T (g_{k+1} - g_k)}
\]

(1.7)

\[
\beta_k^{DPRP} = \beta_k^{PRP} - t \frac{g_k^T d_k \|y_k\|}{\|g_k\|^4}
\]

(1.8)

where, \(t > 1/4 \)

\[
\beta_k^{RMIL} = \frac{g_k^T (g_{k+1} - g_k)}{\|d_k\|^2}
\]

(1.9)

\[
\beta_k^1 = \frac{g_k^T y_k}{d_k^T y_k} - t \frac{g_k^T d_k}{\|d_k\|^2}
\]

(1.10)

where, \(t > 0 \)
\[y_k = \delta_k + \beta k s_k + \delta_k y_k \]

\[d_{k+1} = -g_{k+1} - \beta_k s_k + \delta_k y_k \] (2.1)

where \(\beta_k = \frac{g_{k+1}^T s_k}{g_k^T s_k} \) and \(\delta_k = \frac{g_{k+1}^T y_k}{y_k^T s_k} \), see[4]. Also, There are many three term conjugate gradient algorithm suggested, for instance:

\[d_{k+1} = -g_{k+1} - \beta_k s_k - \frac{g_{k+1}^T d_k}{g_k^T s_k} y_k \] (2.2)

\[d_{k+1} = -g_{k+1} - \beta_k y_k - \frac{g_{k+1}^T d_k}{g_k^T s_k} y_k \] (2.3)

We suggest a new three term conjugate gradient as following:

\[d_{k+1} = -g_{k+1} - \beta_0^N ew s_k - \delta k y_k \] (2.4)

where, \(\delta \in (0,1) \) and \(\mu = \frac{g_{k+1}^T d_k}{g_k^T s_k} \).

Now, from equation (2.3) and equation (2.4), we have

\[\frac{g_{k+1}^T y_k}{g_k^T s_k} d_k - \frac{g_{k+1}^T d_k}{g_k^T s_k} y_k = \beta_0^N ew d_k - \delta k \frac{g_{k+1}^T d_k}{g_k^T s_k} y_k \]

Multiplying both sides of above equation by \(d_k \), we obtain

\[\frac{g_{k+1}^T y_k}{g_k^T s_k} d_k d_k - \frac{g_{k+1}^T d_k}{g_k^T s_k} d_k y_k = \beta_0^N ew d_k^T d_k - \delta k \frac{g_{k+1}^T d_k}{g_k^T s_k} d_k^T d_k y_k \]

This implies that

\[\frac{g_{k+1}^T y_k}{g_k^T s_k} d_k d_k - \frac{g_{k+1}^T d_k}{g_k^T s_k} d_k y_k = \beta_0^N ew \frac{g_{k+1}^T d_k}{g_k^T s_k} d_k - \delta k \frac{g_{k+1}^T d_k}{g_k^T s_k} d_k^T d_k y_k \]

So,

\[\beta_0^N ew = \beta_0^R PR + (\delta - 1) \frac{g_{k+1}^T d_k y_k}{d_k^T d_k g_k^T s_k} \] (2.5)

where, \(0 < \delta < 1 \).

2.1 Algorithm of a new conjugate gradient method(\(\beta_0^N ew \))

Step(1): Select \(x_1 \) and \(\epsilon = 10^{-5} \).

Step(2): Set \(d_1 = -g_1 \), \(g_k = \frac{\nablaf(x_k)}{g_k} \), set \(k = 1 \).

Step(3): Compute the step length \(\alpha_k > 0 \) satisfying the Wolfe line search

\[f(x_k + \alpha_k d_k) - f(x_k) \leq c_1 \alpha_k g_k^T d_k \]

\[\alpha_k d_k \leq c_2 |g_k^T d_k| \]

where, \(0 < \alpha_k < c_2 < 1 \).

Step(4): Compute

\[x_{k+1} = x_k + \alpha_k d_k \]

\[g_{k+1} = \frac{\nablaf(x_{k+1})}{g_k^T d_k} \] if \(g_{k+1} \leq \epsilon \), then stop.

Step(5): Compute \(\beta_0^N ew \) by (2.5)

Step(6): Compute \(d_{k+1} = -g_{k+1} - \beta_0^N ew d_k \)

Step(7): If \(g_{k+1} \leq 0.2 \) then go to step 2.

Else
Let \(k = k + 1 \) and go to step 3.

Theorem 2.1: Assume that the sequence \(\{x_k\} \) is generated by (1.2), then the search direction in (1.3) with new conjugate gradient method (2.5) satisfy the descent condition, i.e. \(d_{k+1}^T g_{k+1} \leq 0 \) with exact and inexact line search.

Proof: From (1.3) and (2.5) we have,
\[
d_{k+1} = -g_{k+1} + \left(\frac{\nabla^T y_k}{\|g_k\|^2} + (\delta - 1) \frac{\nabla^T y_k}{d_k^T d_k \|g_k\|^2} \right) d_k
\] (2.6)

Multiply both sides of above equation by \(g_{k+1} \), to obtain
\[
d_{k+1}^T g_{k+1} = -\|g_{k+1}\|^2 + \frac{\nabla^T y_k}{\|g_k\|^2} d_k^T g_{k+1} + (\delta - 1) \frac{(\nabla^T y_k)}{d_k^T d_k \|g_k\|^2} \|g_{k+1}\|^2 \leq 0.
\] (2.7)

If the step length \(\alpha_k \) is chosen by an exact line search which requires \(d_k^T g_k \neq 0 \). Then the proof is complete. If the step length \(\alpha_k \) is chosen by inexact line search which requires \(d_k^T g_k \neq 0 \)

The first two terms of equation (2.7) are less than or equal to zero because the parameter of (PRP) satisfies the descent condition, and the third term clearly is less than or equal to zero since \(d_k^T y_k > 0 \), so,
\[
d_{k+1}^T g_{k+1} = -\|g_{k+1}\|^2 + \frac{\nabla^T y_k}{\|g_k\|^2} d_k^T g_{k+1} + (\delta - 1) \frac{(\nabla^T y_k)}{d_k^T d_k \|g_k\|^2} \|g_{k+1}\|^2 \leq 0.
\]

Theorem 2.2: Assume that the sequence \(\{x_k\} \) is generated by (1.2), then the search direction in (1.3) with new conjugate gradient method (2.5) satisfy the sufficient descent condition, i.e. \(d_{k+1}^T g_{k+1} \leq -C \|g_{k+1}\|^2 \).

Proof: From (1.3) and (2.5) we have
\[
d_{k+1} = -g_{k+1} + \left(\frac{\nabla^T y_k}{\|g_k\|^2} + (\delta - 1) \frac{\nabla^T y_k}{d_k^T d_k \|g_k\|^2} \right) d_k
\] (2.8)

Multiply both sides of above equation by \(g_{k+1} \), to obtain
\[
d_{k+1}^T g_{k+1} = -\|g_{k+1}\|^2 + \frac{\nabla^T y_k}{\|g_k\|^2} d_k^T g_{k+1} + (\delta - 1) \frac{(\nabla^T y_k)}{d_k^T d_k \|g_k\|^2} \|g_{k+1}\|^2 \leq 0.
\] (2.9)

Now, since the parameter of (PRP) satisfies the descent condition, then the above equation becomes
\[
d_{k+1}^T g_{k+1} = (\delta - 1) \frac{(\nabla^T y_k)}{d_k^T d_k \|g_k\|^2} \|g_{k+1}\|^2 \leq 0
\]
\[
= (\delta - 1) \frac{(\nabla^T y_k)}{d_k^T d_k \|g_k\|^2} \|g_{k+1}\|^2 \|g_{k+1}\|^2
\]
\[
= \|g_{k+1}\|^2 \|g_{k+1}\|^2 \leq 0.
\]

Let \(C = (1 - \delta) \frac{(\nabla^T y_k)}{d_k^T d_k \|g_k\|^2} \) which is positive, then
\[
d_{k+1}^T g_{k+1} \leq -C \|g_{k+1}\|^2.
\] (2.10)

3. Numerical Results

This section is devoted to test the implementation of new method. We compare our method with Conjugate Gradient methods (PRP), (HS), RMIL and \(\beta_k \) the comparative tests involve Well-known nonlinear problems (standard test function) with different dimensions \(4 \leq n \leq 5000 \), all programs are written in FORTRAN90 language and for all cases the stopping condition is \(\|g_{k+1}\| \leq 10^{-5} \), the results given in table (1) and table (2) specifically quote the number of function NOF and the number of iteration NOI. More experimental results in table (1) and table (2) confirm that the new CG is superior to standard CG (PRP), standard CG (HS), RMIL and \(\beta_k \) with respect to the NOI and NOF.
Table (1): Comparative Performance of the Three Algorithms (PRP, HS and New Conjugate Gradient Method)

<table>
<thead>
<tr>
<th>Test function</th>
<th>N</th>
<th>Algorithm of PRP</th>
<th>Algorithm of HS</th>
<th>New algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubic</td>
<td>4</td>
<td>15</td>
<td>45</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>16</td>
<td>47</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>16</td>
<td>47</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>16</td>
<td>47</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>16</td>
<td>47</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>16</td>
<td>47</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>5000</td>
<td>16</td>
<td>47</td>
<td>13</td>
</tr>
<tr>
<td>Extended PSC1</td>
<td>4</td>
<td>7</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>6</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>6</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>7</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>7</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>7</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>5000</td>
<td>7</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>GCentral</td>
<td>4</td>
<td>22</td>
<td>159</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>22</td>
<td>159</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>22</td>
<td>159</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>22</td>
<td>159</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>23</td>
<td>171</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>23</td>
<td>171</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>5000</td>
<td>30</td>
<td>270</td>
<td>28</td>
</tr>
<tr>
<td>Miele</td>
<td>4</td>
<td>37</td>
<td>116</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>37</td>
<td>116</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>44</td>
<td>148</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>44</td>
<td>148</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>44</td>
<td>148</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>50</td>
<td>180</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>5000</td>
<td>50</td>
<td>180</td>
<td>54</td>
</tr>
<tr>
<td>OSP</td>
<td>4</td>
<td>8</td>
<td>45</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>13</td>
<td>57</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>37</td>
<td>147</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>49</td>
<td>176</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>110</td>
<td>341</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>161</td>
<td>493</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>5000</td>
<td>276</td>
<td>844</td>
<td>256</td>
</tr>
<tr>
<td>Powell</td>
<td>4</td>
<td>35</td>
<td>87</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>35</td>
<td>87</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>35</td>
<td>87</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>35</td>
<td>87</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>35</td>
<td>87</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>35</td>
<td>87</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>5000</td>
<td>35</td>
<td>87</td>
<td>41</td>
</tr>
<tr>
<td>Wood</td>
<td>4</td>
<td>29</td>
<td>67</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>29</td>
<td>67</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>29</td>
<td>67</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>30</td>
<td>69</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>30</td>
<td>69</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>30</td>
<td>69</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>5000</td>
<td>30</td>
<td>69</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1734</td>
<td>5922</td>
<td>1679</td>
</tr>
</tbody>
</table>

Table (2): Comparative Performance of the two Algorithms (RMIL, β^1_k and New Conjugate Gradient Method)

<table>
<thead>
<tr>
<th>Test function</th>
<th>N</th>
<th>Algorithm of RMIL</th>
<th>β^1_k</th>
<th>New algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubic</td>
<td>4</td>
<td>16</td>
<td>47</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>16</td>
<td>47</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>16</td>
<td>47</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>16</td>
<td>47</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>16</td>
<td>47</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>16</td>
<td>47</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>5000</td>
<td>16</td>
<td>47</td>
<td>13</td>
</tr>
<tr>
<td>Extended PSC1</td>
<td>4</td>
<td>7</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>6</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>6</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>7</td>
<td>18</td>
<td>7</td>
</tr>
</tbody>
</table>
500 7 18 7 18 6 16
1000 7 18 7 18 6 16
5000 7 18 7 18 6 16

GCentral
4 33 197 22 159 21 147
10 34 208 22 159 21 147
50 39 265 22 159 22 159
100 43 315 22 159 22 159
500 48 380 23 171 22 159
1000 51 420 23 171 22 159
5000 56 489 28 248 23 173

Miele
4 52 164 33 104 29 88
10 59 194 33 104 29 88
50 67 229 33 104 35 119
100 79 273 33 104 35 119
500 90 317 33 104 36 121
1000 90 317 33 104 36 121
5000 106 395 33 104 43 159

OSP
4 8 45 8 44 8 44
10 13 57 13 58 13 58
50 39 152 34 134 32 113
100 60 210 49 180 47 166
500 236 745 107 328 109 333
1000 471 F 146 448 156 480
5000 F F 257 763 275 833

Powell
4 F F 38 108 29 74
10 F F 38 108 29 74
50 F F 40 122 29 74
100 F F 40 122 29 74
500 F F 40 122 29 74
1000 F F 40 122 32 92
5000 F F 40 122 32 92

Wood
4 96 199 30 68 27 63
10 101 209 30 68 27 63
50 103 213 30 68 28 65
100 118 243 30 68 28 65
500 128 263 30 68 28 65
1000 128 263 30 68 28 65
1000 148 303 30 68 28 65

Total
6655 12016 1630 5580 1569 5322

Notes:
1- $F > \frac{1000}{2}$.
2- We took $F = 500$ for summation.

Table (3): Percentage of Improving of the New Method

<table>
<thead>
<tr>
<th>Algorithm of PRP</th>
<th>New Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOI 100%</td>
<td>90.48442907657%</td>
</tr>
<tr>
<td>NOF 100%</td>
<td>89.8682877406%</td>
</tr>
<tr>
<td>Algorithm of HS New Algorithm</td>
<td></td>
</tr>
<tr>
<td>NOI 100%</td>
<td>93.4448412388%</td>
</tr>
<tr>
<td>NOF 100%</td>
<td>90.881147541%</td>
</tr>
<tr>
<td>Algorithm of RMI New Algorithm</td>
<td></td>
</tr>
<tr>
<td>NOI 100%</td>
<td>23.5762504523%</td>
</tr>
<tr>
<td>NOF 100%</td>
<td>44.290454061%</td>
</tr>
<tr>
<td>$\beta_1^* $ New Algorithm</td>
<td></td>
</tr>
<tr>
<td>NOI 100%</td>
<td>96.2576687117%</td>
</tr>
<tr>
<td>NOF 100%</td>
<td>95.376344086%</td>
</tr>
</tbody>
</table>

4. Conclusion

In this paper, we suggested a new conjugate gradient method for unconstrained optimization. Implemented and tested to some extent, while numerical tests were carried out on low and high dimensionality problems, and comparisons were made amongst different test functions with inexact line search. Some of the numerical results have been reported.
A New Parameter Conjugate Gradient Method Based on Three Terms

References:

