Duality Between Differentiability and Minimization in Banach Spaces

Nourddin Saidou

National Institute of Applied Sciences, Euromed University of Fez
Route de Meknès - Morocco.
n.saidou@insa.ueuromed.org

Abstract. In this paper we will establish a new relationship between differentiability and optimization of convex functions. We consider convex lower semi continuous functions in Banach spaces and we characterize respectively the relation between Fréchet (Gâteaux) differentiability and *strong minimum (*weak minimum) in the dual.

Keywords: Convex functions, strongly exposed, denting points, strong, weak minimum, differentiability, rotundity.

1 Introduction

Several works had treated the geometrical properties of convex subsets in Banach spaces. Pionners in the convex analysis like Asplund [2], Collier [9], Bourgain [8], Li-Xin Cheng, Min Li [10], Bourgin [11], R. D. EHuff [3], Phelps [1] had studied the Radon Nikodym properties in duality with Asplund spaces. Very important aspects of points like extrem, exposed and denting points had been used to characterize subsets in Radon Nikodym Spaces. In this work, we will develop our last results about characterizations of geometrical properties of convex lower semi continuous functions. On one hand, we will examine the duality between differentiability of lower proper convex semi-continuous functions and on the other hand the existence of the *strong and *weak minimum of its conjugates. Our procedure is to work in epigraph of convex functions and epigraph of its conjugates. We introduce our study with the extremality such strongly exposed points, exposed points and denting points. In the same way to give the relation between all this points in the dual space and the Fréchet, Gâteau differentiability.

Our paper published in 2003 see [5] deals with the geometrical characterization like extremality in epigraph of convex proper lower semi continuous. We will use some results and corollary in order to prove our main results.

Let X a Banach space and X^* its dual. For each function f defined in X with values in $]-\infty, +\infty]$, we define:

$$\text{dom } f = \{ x \in X / f(x) < +\infty \},$$

and

$$\text{epi } f = \{ (x, r) \in X \times \mathbb{R} / f(x) \leq r, x \in \text{dom } f \}.$$

A function is said to be proper if it has some finite values.

The conjugate of f called f^* defined in X^* with values in $]-\infty, +\infty]$ is.

$$f^*(x') = \sup \{ <x', x> - f(x), x \in X \}.$$

*Corresponding author. Nourddin Saidou n.saidou@insa.ueuromed.org

2010 Mathematics Subject Classification: Primary: 46B20, Secondary: 46B22.
It is a convex proper lower semi continuous function in the topology \((X^*, X)\) respect to the scaler product \(<, >\). The subdifferential of \(f\) at \(x_0\) is
\[
\partial f(x_0) = \{x' \in X^*, < x', x_0 > - f(x_0) \geq < x', x > - f(x) \forall x \in X\}.
\]
The \(r\)-subdifferential at \(x_0\) is
\[
\partial_r f(x_0) = \{x' \in X^*, < x', x_0 > - f(x_0) \geq < x', x > - f(x) - r \forall x \in X\}.
\]
\(f\) is said rotund at \(x_0\) if and only if there exists \(x' \in X^*\) such that for all \(\epsilon > 0\) there exists \(r > 0\) such that
\[
f(x) - f(x_0) - r \leq < x', x > - < x', x_0 > \implies \|x - x_0\| \leq \epsilon.
\]
\(f\) is said to be weakly rotund at \(x_0\) if and only if for all \(\epsilon > 0\) there exists \(0 < r < \epsilon\) such that, for each \(x' \in \partial_r f(x_0)\),
\[
f^*(x') - r \leq < x', x > - f(x) \implies \|x - x_0\| \leq \epsilon.
\]
Let \(C\) be a nonempty closed convex subset of \(X\). We define the indicator function as
\[
\delta_C(x) = 0 \text{ if } x \in C \text{ and } \delta_C(x) = +\infty \text{ else.}
\]
Its conjugate in \(X^*\) is
\[
\delta_C^*(x') = \sup_{x \in C} (\langle x', x \rangle) \text{ for all } x' \in X^*.
\]
\(f\) has a strong minimum at \(x_0\) if
i) \(f(x_0) \leq f(x)\) for all \(x \in X\) and,
ii) If \(f(x_0) \to f(x)\) then, \(x_n \to x_0\) for all \((x_n) \in X\).
\(f\) is said to have a weak minimum at \(x_0\) if and only if there exists \((x_n')\) in \(X^*\) such that
\[
|f^*(x_n') - (x_n' - f(x_0))| \to 0,
\]
and
\[
\text{if } |f^*(x_n') - (x_n' - f)(x_n)| \to 0 \text{ then, } x_n \to x_0 \forall (x_n) \in X.
\]
We say that \((x_n')\) is a minimizing subsequence of \(f\). It is easy to verify that if \(f - x'\) has a strong minimum at \(x_0\) then \(f\) has a weak minimum at \(x_0\).
Let \(A\) a nonempty closed convex subset in \(X\). For \(r > 0\) and \(x' \in X^*\), we define a slice defined by \(x'\) as:
\[
T(A, x', r) = \{x \in X/ \delta^*_A(x') - r \leq < x', x >\}.
\]
An element \(e\) is said to be exposed by \(x' \in X^*\) if and only if:
\[
< x', e > \geq < x', x > \forall x \neq e \text{ and } \delta^*_A(x') = < x', e >.
\]
An element \(e\) is said strongly exposed by \(x' \in X^*\) if and only if one of the equivalents statement below holds:
1) \(\delta^*_A(x') = < x', e >\) and \(\forall x_n \in X \leq < x', x_n > \to < x', >\) implies that \(x_n \to e\) respect to the norm in \(X\).
2) There exists \(x' \in X^*\) such that for all \(\epsilon > 0\) \(T(A, x', r)\) contains \(e\) and has diameter less than \(\epsilon\). We recall that the diameter of a subset \(K\) is \(\text{diam}(K) = \sup_{x,y \in K} ||x - y||\).
An element \(e\) is said a denting point of \(A\) if and only if for each \(\epsilon > 0\), there exists a slice which contains \(e\) and its diameter is smaller than \(\epsilon\).
We denote by \(s - \exp(A)\) the set of strongly exposed points and \(\text{dent}(A)\) the set of denting points of \(A\) in the duality \((X, X^*)\). Similarly, we denote by \(s^* - \exp(A)\) the set of *strongly exposed points and \(\text{*dent}(A)\) the set of *denting points of \(A\) in the duality \((X^*, X)\).
Let \(x_0 \in X\). The function \(f\) is said to be strictly convex at \(x_0\) if and only if, for all \(t \in]0, 1]\:
\[
f(t x + (1 - t)y) < tf(x) + (1 - t)f(y) \forall x, y \text{ such that } x_0 = tx + (1 - t)y.
\]
It is said to be Gâteaux differentiable at \(x_0\) if,
\[
f'(x_0).x = \lim_{t \to 0} \frac{f(x_0 + tx) - f(x_0)}{t}
\]
exists for all \(x \in X\) and \(f'(x_0) \in X^*\).
It is said to be Fréchet differentiable at \(x_0 \) if there exists \(f'(x_0) \in X^* \) such that:
\[
\lim_{x \to 0} \frac{f(x_0 + x) - f(x_0) - f'(x_0) . x}{\|x\|} = 0.
\]

Now, we can announce some preliminary results that characterize the relation between strict convexity, rotundity, subdifferentiability and extremality (exposed and denting points).

Lemma 1.1. Let \(f \) be a convex proper lower semi continuous (lsc) function in \(X \) with values in \(] - \infty, +\infty] \).
If \((x_0, f(x_0)) \) is strongly exposed by \((x', -1) \) in the epif, then \(x' \in \partial f(x_0) \).

Proof. \((x_0, f(x_0))\) is strongly exposed by \((x', -1)\) in epif then,
\[
< (x', -1), (y, \lambda) > \leq < (x', -1), (x_0, f(x_0)) > \quad \forall (y, \lambda) \in \text{epif}.
\]
In particular, \((x, f(x)) \in \text{epif}\) then,
\[
< (x', -1), (x, f(x)) > \leq < (x', -1), (x_0, f(x_0)) > \quad \forall x \in X.
\]
Hence for all \(x \in X \):
\[
< x, x_0 > - f(x_0) \geq < x', x > - f(x).
\]
Then \(x' \in \partial f(x_0) \).

Lemma 1.2. If \(f \) is rotund at \(x_0 \) then \(\partial f(x_0) \) is nonempty.

Proof. If \(f \) is rotund at \(x_0 \) then there exists \(x' \in X^* \), and for all \(\epsilon > 0 \) there exists \(r > 0 \) such that \(f(x) - f(x_0) - r \leq < x', x > - < x', x_0 > \) implies that \(\|x - x_0\| \leq \epsilon \).
Let \(x \neq x_0 \). There exists \(\epsilon > 0 \) such that \(\|x - x_0\| > \epsilon \), then there exists \(r > 0 \) such that:
\[
< x', x > - f(x) + r \leq < x', x_0 > - f(x_0).
\]
We conclude that \(x' \in \partial f(x_0) \). Now we prove that the rotundity is a geometrical property stronger than strict convexity.

Lemma 1.3. If \(f \) is rotund on \(x_0 \) then it is strictly convex at \(x_0 \).

Proof. Suppose that \(f \) is rotund at \(x_0 = tx_1 + (1 - t)x_2 \) such that \(t \in [0, 1] \) and \(x_1 \neq x_2 \). We suppose that \(f(x_0) = tf(x_1) + (1 - t)f(x_2) \). \(x_0 \neq x_i \) (for \(i = 1, 2 \)), then there exists \(\epsilon > 0 \) such that \(\|x_i - x_0\| > \epsilon \).
Since \(f \) is rotund at \(x_0 \), there exists \(r > 0 \) such that:
\[
< x', x_i > - f(x_i) + r \leq < x', x_0 > - f(x_0), i = 1, 2.
\]
We multiply the inequality (for \(i = 1 \)) by \(t \) and the inequality (for \(i = 2 \)) by \((1 - t) \) and we add each other to obtain
\[
< x', x_0 > - f(x_0) + r \leq < x', x_0 > - f(x_0).
\]
So \(r \leq 0 \), absurd.

Remark 1.1. It is easy to verify these inclusions:
1) \(s - \exp(\text{epif}) \subset \exp(\text{epif}) \).
2) \(s - \exp(\text{epif}) \subset \text{dent}(\text{epif}) \).

Now, we will be able to demonstrate two important propositions. The first one characterizes the relation between rotundity, strong exposed points and strong minimum of \(f \) regularized by \(x' \). The second proposition characterize the relation between weak rotundity, denting points and the weak minimum of \(f \) in \(X \).
Proposition 1.1. Let f a convex proper lower semi continuous (lsc) function in X with values in $]-\infty, +\infty]$. The statements below are equivalents:

1) There exists $x' \in \partial f(x_0)$ such that $f - x'$ has a strong minimum at x_0.
2) $(x_0, f(x_0))$ is strongly exposed by $(x', -1)$ in epif.
3) f is rotund at x_0.

Proof. We demonstrate implications: 1) implies 2), 2) implies 3) and 3) implies 1). In the first one, suppose that $x' \in \partial f(x_0)$ such that $f - x'$ has a strong minimum at x_0, let $\epsilon > 0$ and $r \leq \min(\frac{1}{\|x\|}, \epsilon)$. The definition of strong minimum implies that, there exists $\delta > 0$ and if $|f(x) - f(x_0) - (x', x) - x'x_0)| \leq \delta$ then $\|x - x_0\| \leq r$ for all $x \in X$. Hence, it is easy to see that $T(\text{epif}, (x', -1), \alpha)$ has a diameter less than ϵ where $\alpha \leq \min(\frac{1}{2}, \delta)$. Consequently $(x_0, f(x_0))$ is strongly exposed by $(x', -1)$ in epif: (see the second inclusion in Remark 1.1).

2) implies 3). We suppose that $(x_0, f(x_0))$ is strongly exposed by $(x', -1)$ in epif. Let $\epsilon > 0$ and α such that the diameter of $T(\text{epif}, (x', -1), \alpha)$ small than ϵ. Each $(x, f(x))$ such that $<x', x> - f(x) \geq <x', x_0> - f(x_0) - \alpha$ is in the $T(\text{epif}, (x', -1), \alpha)$, also $(x_0, f(x_0))$ is in the same slice, so we can confirm that

$$\|x - x_0\| \leq \epsilon,$$

which prove the rotundity of f at x_0.

For the implication 3) implies 1), we can remark that $x' \in \partial f(x_0)$ and the second condition is evident.

Proposition 1.2. Let f a convex proper lower semi continuous (lsc) function in X with values in $]-\infty, +\infty]$. Statements below are equivalents:

1) f has a weak minimum at x_0.
2) $(x_0, f(x_0))$ is a denting point in epif.
3) f is weakly rotund at x_0.

Proof. We start with the equivalence 3) equivalent 2). Suppose that f is weak rotund at x_0. Let $\epsilon > 0$, since f is continuous at x_0, then there exists $\delta > 0$ such that $|f(x) - f(x_0)| \leq \epsilon$ when $\|x - x_0\| \leq \delta$.

If we use the weak rotundity for $\epsilon_1 = \min(\delta, \frac{\epsilon}{2})$, we verify easily that the diameter of the slice $T(\text{epif}, (x', -1), \alpha)$ is less than ϵ when $\alpha \leq \epsilon_1$ and $x' \in \partial f(x_0)$. Inversely, if $(x_0, f(x_0))$ is a denting point in epif then $\forall \epsilon > 0$, there exists $r \leq \epsilon$ such that $(x_0, f(x_0)) \in T(\text{epif}, (x', -1), \alpha)$ with a diameter less than ϵ. Let $x' \in \partial f(x_0)$ and $<x', x> - f(x) \geq f^*(x') - r$. Then, $(x, f(x)) \in T(\text{epif}, (x', -1), \alpha)$, hence $\|x - x_0\| \leq \epsilon$, which prove that f is weakly rotund at x_0.

Now we prove that 1) implies 3). Suppose that f is weakly rotund at x_0, then, $\forall n \in N$, there exists $x'_n \in \partial f(x_0)$ such that: for all $x \in X$, $(x'_n - f)(x) \geq f^*(x') - \frac{1}{n}$ implies $\|x - x_0\| \leq \epsilon$. Since $x'_n \in \partial f(x_0)$ then we have

$$\inf X(f - x'_n) \leq (f - x'_n)(x) \leq \inf X(f - x'_n) + \frac{1}{n},$$

which implies that:

$$|\inf X(f - x'_n) - (f - x'_n)(x_0)| \to 0.$$
Proof. For the proof we refer to [5]. In the same way and using the paper [5], we announce an important characterization showing the relationship between Gâteau differentiability and *denting points.

Proposition 1.4. (See [5]) Let \(f \) a convex proper lower semi continuous (lsc) function in \(X \) with values in \(\mathbb{R} \) and \(x_0 \in \text{intdom} f \).

If \(f \) is Gâteaux differentiable at \(x_0 \) and \(df(x_0) = x' \) then \((x', f^*(x')) \) is a *denting point in \(\text{epi} f^* \).

Proof. For the proof we refer to our paper see [5].

Now, with all these preliminary results proved as above, we can announce our main results in this work,

Remark 1.2. *strong minimum (resp. *weak minimum) of \(f \) are used with same definitions above in \(X^* \) according to the duality \((X^*, X) \).

Theorem 1.4. Let \(f \) a convex proper lower semi continuous (lsc) function in \(X \) with values in \(\mathbb{R} \) and \(x_0 \in \text{intdom} f \). The following statements are equivalents.

1) \(f \) Fréchet differentiable at \(x_0 \) and \(df(x_0) = x' \).

2) \(f^* - x_0 \) has a *strong minimum in \(X^* \) at \(x' \).

3) \(f^* \) is rotund at \(x' \).

Proof. The proof is immediately a consequence of Proposition 1.1 and Proposition 1.3 as above.

Example 1.5. We give an illustration in \(X = \mathbb{R} \). we consider \(f(x) = e^x \). It is a proper convex continuous function in \(\mathbb{R} \). Its conjugate is:

\[
\begin{align*}
 f^*(\lambda) &= \lambda \log \lambda - \lambda + \lambda^+ x^+ \quad \forall x^+ > 0, \\
 f^*(\lambda) &= 0 \text{ if } x^+ = 0, \\
 f^*(\lambda) &= +\infty \text{ else}.
\end{align*}
\]

For example.

1) \(f \) is differentiable at 1 and \(df(1) = e \). So it is easy to verify that \(f^*(x^*) - 1.x^+ \) admits a strong minimum at \(e \) and it is also easy to verify that \(f^* \) is rotund at \(e \).

2) \(f \) is differentiable at 3 and \(df(3) = e^3 \). So it is easy to verify that \(f^*(x^*) - 3.x^+ \) admits a strong minimum at \(e^3 \) and it is also easy to verify that \(f^* \) is rotund at \(e^3 \).

The second theorem that we will announce below gives us just a sufficient condition instead of equivalence between Gâteau differentiability and *weak properties of \(f^* \) (*weak minimum, *weak rotundity).

Theorem 1.6. Let \(f \) a convex proper lower semi continuous (lsc) function in \(X \) with values in \(\mathbb{R} \) and \(x_0 \in \text{intdom} f \).

If \(f \) is Gâteaux differentiable at \(x_0 \) and \(df(x_0) = x' \) then we have the two equivalent statements below.

1) \(f^* \) has a *weak minimum in \(X^* \) at \(x' \).

2) \(f^* \) is *weakly rotund at \(x' \).

Proof. The proof is immediately a consequence from Proposition 1.2 and Proposition 1.4 as above.

ACKNOWLEDGEMENTS. The author would like to thank the referee for valuable comments.

References

