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Abstract:   This paper aimed at modeling and forecasting wholesale prices of maize in Tanzania using 
Autoregressive Integrated Moving average model for data from February 2004 to August 2017 obtained from 

the Bank of Tanzania. Maize crop growers lack fundamental knowledge on which periods do prices of their 

harvests rise up. The empirical study found 𝐀𝐑𝐈𝐌𝐀 (𝟑, 𝟏, 𝟏) as the best model for maize wholesale price 
based on minimum Akaike`s Information Criterion (AIC) and the fitted model was found to be adequate using 

Ljung-Box test. The forecasted prices show an increase from September 2017 to January 2018 and then to 

June 2018 with the maximum price in June 2018 for the forecasted horizon. The forecasted prices decrease up 

to January 2019 and increase thereafter.   
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1.    Introduction 

Maize crop as one of the agricultural commodities, face high price volatility contributed by 

many factors ranging from variation in climatic conditions, pests and diseases, seasons of the year, 

prices of oil products, nature of infrastructure from production points to market places and 

urbanization process which consumes arable land, just to mention a few.  Government policies also 

play a major role in price fluctuations of food crops like maize.  For example when exportation of 

food crops is liberalized and importation of the same is banned, domestic food stocks decrease and 

increases their demand and consequently prices. On the other hand, import liberalization with strict 

exportation leads to an increase in supply and eventually a fall in prices. Researchers[5] pointed out 

that harvesting cycles, weather shocks, locality, and agro-ecology may systematically influence price 

behavior. Technological advancement has made some crops like maize and beans to have multiple 

usages leading to their increased demand. Needless to say, price forecasting of agricultural products 

is important because it can make farmers to improve production and increase real incomes [23]. 

However, unavailability of data, not to mention the cost associated with data collection for the 

multiple factors that influence agricultural food crop prices make it difficult to use econometric 

model [22]. Furthermore, econometric forecasting methods in agriculture have been reported not to 

perform well in forecasting prices and production because they are mostly affected by random 

shocks [4]. Researchers have observed that the large simultaneous-equations macroeconomic models 

constructed in the 1960s frequently have poor forecasting performance compared to fairly simple, 

single-variable time series models involving few parameters and compact specifications [14]. 

This paper, therefore, aims at fitting a time series model that can be used for forecasting 

wholesale prices of maize in Tanzania using the Box-Jenkins approach. In time series models the 

past values of the same variables give standard forecasts based on classical statistics application. The 

most significant point of the approach is that explanatory variables in these models are the past 

values of the same variable, although according to the critics of time series analysis, this is not 
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necessarily the best approach mostly because of the pertinence of other economic and non-economic 

explanatory variables in the particular situation concerned. 

Many researchers have been involved in fitting and applying models for forecasting prices of 

agricultural food crops worldwide. Researchers [1] forecasted retail and wholesale prices of rice by 

first fitting time series models using Box and Jenkins methodology in Nigeria. The series was not 

stationary until first differencing. ARIMA (2,1,1)  had a smaller mean square error and was 

appropriate for both imported and domestic prices. In Bangladesh, a country dominated by rice 

production in terms of agriculture, researchers fitted SARIMA(1,1,1)x(0,1,1)12 which was found to 

be adequate based on the Ljung-Box test [15],[18]. Researchers [23] compared Autoregressive 

Moving Average with Autoregressive Conditional Heteroscedasticity model (ARCH) for forecasting 

prices of agricultural products including potatoes, onions, tomatoes, and veal.  Results indicated that 

ARIMA model was better compared to ARCH. 

Researchers [11] investigated the statistical behavior of potato wholesale prices in Agra market. 

Model accuracy was measured by considering the Mean Absolute Percentage Error (MAPE) and 

Mean Square Error (MSE) values, for which the fitted model ARIMA(2,1,1), had the smallest values 

of 20.6 and 102.2 respectively.  

2.    Materials and Methods 

2.1 Data  

This study used time series data from Monthly Economic Review published by Bank of 

Tanzania (BOT) retrieved from www.bot-tz.org for the period ranging from February 2004 to August 

2017 giving 163 observations without any missing value. BOT publishes major macroeconomic 

statistics in Tanzania including prices of commodities. The 163 monthly observations for the price of 

maize satisfy the requirement of the Box-Jenkins method which requires at least 50 observations.  

The data collected were national average wholesale price (in Tanzania shillings) per hundred 

kilograms. 

2.2 Box – Jenkins Model Building  

The procedure involves preliminary transformation, model identification, estimation, 

diagnostic check and application of the fitted model for forecasting.  

Step 1: Preliminary Transformation 

ARIMA models are fitted to stationary time series because non-stationary series can only be 

analyzed for that particular period and cannot be generalized to other time periods. A stochastic 

process is said to be stationary if its mean and variance are constant over time and the value of the 

covariance between the two time periods depends only on the distance or gap or lag between the two 

time periods and not the actual time at which the covariance is computed [13]. Mathematically this 

means: 

E(Xt) = E(Xs) = µ and Cov(Xt,Xs) = E[{Xt − E(Xt)}{Xs − E(Xs)}] = R(t − s). 

Stationarity in mean for a time series is attained by taking the non-seasonal and seasonal difference 

to remove trend and seasonality respectively depending on whether the time series is non-seasonal or 

seasonal as proposed by Box and Jenkins [7],[6]. In practice, most time series will become stationary 

after taking first differences [8]. 
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Step 2: Model Identification 

The model identification process is performed by observing the behavior of the autocorrelation 

function (ACF) and partial autocorrelation function (PACF) of the stationary time series. A model is 

said to be a pure autoregressive of order p when the partial autocorrelation function cuts off after lag 

p. On the other hand, it is said to be a pure moving average process of order q if the autocorrelation 

function cuts off after lag q. For the mixed model ARMA(p, q), both the partial autocorrelation and 

autocorrelation functions tail off. 

One of the popular Box-Jenkins models in time series analysis is Autoregressive Integrated Moving 

average (ARIMA). The structure of this model is ARIMA(p, d, q)  where p is the order of the 

autoregressive component, q is the order of the moving average and d denotes the degree of 

differencing. ARIMA models are identified by examining the nature of spikes of ACF and PACF to 

identify components or order of the model [21]. 

Step 3: Model Estimation 

This involves the estimation of coefficients of the model and testing their significance. The 

coefficients are estimated based on conditional least squares and maximum likelihood method. The 

processes are incorporated through statistical software used for estimation of the model parameters. 

Nowadays with the development of computers, estimation methods are available for varieties of 

statistical software used for analysis [20]. 

Step 4: Diagnostic Checking 

The purpose of the diagnostic check is to test for model adequacy using the appropriate 

statistical tests and procedures. It involves checking whether the residuals generated from the fitted 

models are normally distributed or not. In this case, a model is said to be adequate when its residuals 

are random. The procedure requires examining the statistical properties of residuals which are 

obtained.  

After fitting the model, it is necessary to plot the residuals against time t and compute the 

correlogram of these residuals. Denoting the autocorrelation coefficient at lag k for êt by rk and if the 

true model is fitted, it follows therefore that rk~ N (0,  
1

T
  ) for large T. Values of rk which lie outside 

the interval ±
1.96

√T
≈ ±

2

√T
 (Bartlett’s 95 percent confidence interval) for large value of T are 

significantly different from zero at 5 percent level of significance [9]. This may indicate that the 

residuals are correlated and fitted model is not appropriate. If the given model is not adequate, 

another model is entertained, its parameters estimated, and residuals checked for randomness. 

Ljung-Box test has been suggested for determining whether the residuals are normally distributed or 

not [19]. The Q-Statistic which has a limiting distribution of chi-square and Ljung-Box test was 

developed as an extension of the Box-Pierce statistic for model adequacy checking on residuals of 

the fitted model was developed by [6]. These portmanteau tests consider the first k values of the 

correlogram all at once. The Q-statistic and the Ljung-Box statistic have the same limiting Chi-

square distribution with (k-m) degrees of freedom which is the difference between the number of 

lags considered in the test and number of parameters estimated [24]. Equations (1) and (2) below 

present the Q-statistic and Ljung-Box statistic respectively. 

Q = n ∑ ru
2~ χ2

k−m

k

u=1

                                                                                                     (1) 

LB = n(n + 2) ∑
ru

2

n − k

k

u=1

~χ2
k−m

                                                                                 (2) 
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where, m is the number of parameters estimated for the model, n sample size (number of 

observations used in estimating the model),  ru is residual autocorrelation at lag u, and k is the lag 

length chosen in the range 15-30 for inclusion in the test. 

 

Step 5: Application of the Fitted Model for Forecasting  

This involves the use of the fitted model for forecasting the future values which can be short-

term, medium-term and long-term forecasting. The forecast values are reported with confidence 

intervals specified with the level of significance for out of sample forecasts. 

2.2.1 Akaike’s Information Criterion (AIC) 

This was developed by a Japanese Professor [3] and is defined by: 

AIC = −2 log(maximum likelihood) + 2k, where “k” is the number of estimated coefficients of the 

fitted model [20]. AIC comprises two parts: a term which estimates deviation from the fitted model 

and the penalizing factor for the number of parameters to the model. A model with the minimum 

AIC value is the one to select among the other models fitted to the data. This criterion is a function of 

the residual variance and a factor which is used to penalize the number of estimated parameters.  

2.2.2 Forecast Accuracy Performance Evaluation 

For the sake of forecasting accuracy of the model statistics related to the error are computed in 

order to choose the best model based on their magnitudes. The common measures of forecast 

accuracy performance include Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 

Mean Absolute Percentage Error (MAPE), Mean Error (ME) and Mean Percentage Error (MPE).  

The first three statistics measure the magnitude of the errors and the last two statistics measure bias. 

A good model gives small values or values close to zero. 

2.3 Autoregressive Moving Average Models 

A time series which follows model (3) below 

yt = α1yt−1 + α2yt−2 + ⋯ + αpyt−p + εt − θ1εt−1 − θ2εt−2 − ⋯ − θqεt−q     (3)  is said to be an 

Autoregressive moving average of order p, q. It is a mixed model of AR and MA terms. The above 

model can be represented in form of equation(4)given by 

 yt − α1yt−1 − α2yt−2 − ⋯ − αpyt−p = εt − θ1εt−1 − θ2εt−2 − ⋯ − θqεt−q   (4)  

2.4 Autoregressive Integrated Moving Average Models 

The ARMA models can only be used for stationary time series data. However, in practice 

many time series such as those related to socio-economic and business show non-stationary behavior 

[16]. Time series, which contain trend and seasonal patterns, are also non-stationary in nature [12].  

From an application point of view, ARMA models are inadequate to properly describe non-stationary 

time series, which are frequently encountered in practice. For this reason, the ARIMA model is 

proposed, which is a generalization of an ARMA model to include the case of non-stationarity as 

well. 

(1 − α1Z − α2Z2 − ⋯ − αPZP)wt = (1 − θ1Z − θ2Z2 − ⋯ − θqZq)εt             (5) 

where wt = (1 − 𝑍)𝑑yt , is a result of differencing the original series d times [23]. 
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2.5 Seasonal Autoregressive Integrated Moving Average Models 

The ARIMA model is for non-seasonal non-stationary data. Box and Jenkins have generalized 

this model for analyzing time series with seasonality [8]. The proposed model is known as the 

Seasonal ARIMA or SARIMA. In this model, seasonal differencing of appropriate order is used to 

remove non-stationarity from the series. A first-order seasonal difference is the difference calculated 

as  zt =  xt −  xt−Swhere s is the length of the season. The order of seasonal model is specified 

as ( p, d, q) ×  (P, D, Q)𝑆  where p and q are the number of non-seasonal autoregressive and moving 

average parameters respectively, P and Q are the number of multiplicative seasonal autoregressive 

and moving average parameters. D and d are the degrees of seasonal and non-seasonal differencing 

respectively [8]. This study considered monthly data and for this case s=12. Its parameterization is 

presented in equation (6). 

α(Z)AP(ZS)(1 − Z)d(ZS)Dyt = Ѳ(Z)φQ(ZS)εt                                                       (6) 

where  

α(Z) = 1 − α1Z − α2Z2 − ⋯ − αP Z
P  ,       

  Ѳ(Z) = (1 − θ1Z − θ2Z2 − ⋯ − θqZq)εt 

A(Z) = 1 − A1Z − A2Z2S − ⋯ − AP Z
SP         and  

 φ(Z) = (1 − φ1ZS − φ2Z2S − ⋯ − φQZSQ)εt 

3.    Empirical Results 

Any time series is composed of four components namely: seasonal, trend, cyclic and residual. 

Figure 1 below shows the graphs of these components after being decomposed from the time series 

data. The trend looks similar to the original series. 

 
Figure 1: Decomposed Maize Price Series 

3.1 Testing for Stationarity of the Series 

An important first step for analyzing time series data is to check whether it is stationary or not 

and need to take an appropriate transformation in case it is not stationary to ensure it becomes 

stationary.  Figure 1 presents a graph which shows an increasing trend where it can be predicted that 

the series is not stationary but it is important to supplement with some hypothesis testing.  

Augmented Dickey-Fuller (ADF) test was used to test the null hypothesis that the series is not 

stationary. The ADF test when included five lags indicated stationary property but with 12 lags it 

indicated that it was not stationary at 5 percent level of significance. The ADF test involves unit root 

test and is usually complemented by the Kwiatkowski-Phillips-Schmidt-Shin(KPSS) test. The null 

hypothesis of interest under the KPSS test is that the series is stationary. The KPSS test statistic in 

Table 1 is 2.5369 and is less than the critical value 0.463 at 5 percent. Therefore, from both the ADF 

and KPSS tests, the series of  Maize price is not stationary necessitating transformation, in this case, 

differencing to attain stationarity. 
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Table 1: ADF Test and KPSS Test for Maize Price Series 

ADF Test 

Lag order 5 12   

ADF Test Statistic 3.7305  -2.6988   

P-value 0.0242 0.2848   

Alternative hypothesis: Stationary 

KPSS Test 

Significance level 10% 5% 2.5% 1% 

Critical Value 0.347 0.463 0.574 0.739 

Test Statistic 2.5369 

Null hypothesis: Stationary 

Since the series was not stationary from the previous tests, the first difference was performed 

followed by testing if the series became stationary using ADF and KPSS test after first difference. 

Table 2 presents results for ADF and KPSS after first difference and show that the maize price series 

is stationary after the first difference.  The p-values at lags 5 and 12 are less than 0.01 which is also 

less than 5 percent and lead to rejection of the null hypothesis that it is not stationary. The conclusion 

is therefore based on the alternative hypothesis that it is stationary from the ADF test point of view. 

Likewise, the KPSS test statistic in Table 2 is 0.0283 and is less than the critical value at 5 percent 

0.463 which leads to failing to reject the null hypothesis at 5 percent level of significance. 

Table 2: ADF Test and KPSS Test for First Differenced Maize Price Series 

ADF Test 

Lag order 5 12   

ADF Test Statistic -6.3298  -4.3335   

P-value <0.01 <0.01   

Alternative hypothesis: Stationary 

KPSS Test 

Significance level 10% 5% 2.5% 1% 

Critical Value 0.347 0.463 0.574 0.739 

Test Statistic 0.0283  

Null hypothesis: Stationary 

3.2 Model Selection 

Model identification involves observing the properties of ACF and PACF values or their plots. 

From Figure 2, the possible model is ARIMA(0,1,2) by observing the ACF Plot and by observing the 

PACF plot the possible model is ARIMA(3,1,0). If we consider both autoregressive and moving 

average terms ARIMA(3,1,2) is a possible model. With the use of auto.arima function, ARIMA(3,1,2) 

is the best model based on Akaike`s Information Criterion. 

 

Figure 2: ACF and PACF of Differenced Maize Price 
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Table 3 presents AIC for model selection and statistics used for forecast evaluation among the 

competing models. Forecast evaluating statistics are computed to measure the forecasting 

performance of the models and are based on the discrepancy between the observed values and in-

sample forecasts. In order to fit a good model, comparisons of forecasting performance measures are 

of interest and the model with minimum values of these measures was selected. In this context, AIC 

was used as the model selection criterion and model with the minimum value of this criterion was 

selected among the competing models.  

Table 3: Model Selection Criteria and Forecasting Performance Evaluation 

MODEL  FORECAST PERFORMANCE MEASURE 

AIC RMSE 

ARIMA(3,1,1) 3052.0 2852.1970 

ARIMA(0,1,2) 3074.2 3122.314 

ARIMA(3,1,0) 3064.1 3005.458 

ARIMA(3,1,2) 3054.56 2876.858 

ARIMA(3,1,1), was fitted based on minimum AIC value of 3052 and thus is the best model for maize 

price. It is also the best model in terms of forecasting performance with the minimum RMSE 

2852.1970 in Table 3. 

3.3 Model Estimation  

The outputs in Table 4, show model summary for maize prices models. Coefficients with p-

values less than 0.05 are from a statistical point of view significantly different from zero at 5 percent 

level of significance. Coefficients of the fitted models in Table 4 have p-values less than 0.05 and 

therefore from a statistical point of view they are significantly different from zero. 

Table 4: ARIMA Models Summary 

Coefficients AR(1) AR(2) AR(3) MA(1) Drift 

1.2077*** -0.2970*** -0.4072*** -0.8231*** 334.1631 

Standard Error 0.1075 0.1325 0.0814 0.1052 179.992 

***Means Statistically Significant at 5% 

3.4 Diagnostic Checking 

The Ljung-Box test statistic values increase in size as the size of lag length and/or degree of 

freedom increase and the p-values for lags considered are greater than 0.05. From these results, the 

null hypothesis that the residuals generated from the fitted model are random cannot be rejected at 5 

percent level of significance as presented in Table 5. Therefore, the model is adequate and suitable 

for forecasting. 
Table 5: Ljung-Box Test 

 

 

 

 

 

 

Also from Figure 3, the graph of residuals estimated from the fitted model ARIMA(3,1,1) are random. 

Both the autocorrelation function and partial autocorrelation function show that the residuals 

generated from the model are not significant at 95% confidence limits. 

Lag Df Ljung-Box 

Statistic 

P-value 

6 1 2.4214 0.8772 

12 7 4.7496 0.9803 

18 13 8.4585 0.9710 
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Figure 3: Residual Analysis from the Fitted 𝐀𝐑𝐈𝐌𝐀(𝟑, 𝟏, 𝟏) 

3.5 Forecasting Accuracy of the Fitted Model 

The selected ARIMA model for maize price performed very well with the minimum RMSE 

among the other model competed. The average wholesale price for maize in January and February 

2018 were Tanzania shillings 49,807.5 and 58,834.3, per 100 Kilograms respectively as reported 

from Monthly Economic Review published by Bank of Tanzania[2]. The forecasted price using the 

fitted model in January and February 2018 the same year were Tanzania shillings 62,229.49 and 

70,209.11 per 100 kilograms respectively (Table 6). The forecasts do not differ much from the actual 

price and are within the specified 95 percent confidence intervals and this gives credits to the fitted 

models of the food crop prices under study.  

3.6 Application of Fitted Models for Forecasting  

Model qualified after diagnostic check, was used for obtaining forecast price values of maize. 

According to the Box and Jenkins approach, this is the last step in ARIMA model building. Actual 

and forecast price values with their 80 and 95 percent confidence intervals are presented in the 

forecast plots (Figure 4).  

 

Figure 4: Time Plots for Actual and Forecasted Price of maize 

Out of sample forecasts are for two years from September 2017 to August 2019. The price of maize 

is expected to keep increasing with time from January 2018 to September 2018 as presented in Table 

6. June 2018 records the highest price compared to other months of the year.  
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Table 6: Forecast values from September 2017 to August 2019 

Time      Point Forecast  Lo 80     Hi 80    Lo 95     Hi 95 
Sep 2017       50144.00 46419.57  53868.43 44447.98  55840.02 

Oct 2017       47816.98 41455.83  54178.13 38088.44  57545.52 
Nov 2017       49683.50 40389.40  58977.60 35469.40  63897.60 

Dec 2017       54927.45 43187.50  66667.40 36972.75  72882.15 

Jan 2018       62229.49 48550.80  75908.19 41309.73  83149.26 

Feb 2018       70209.11 55205.52  85212.70 47263.09  93155.13 

Mar 2018       77570.54 61763.82  93377.26 53396.26 101744.83 

Apr 2018       83327.14 67110.17  99544.10 58525.43 108128.84 

May 2018       86887.96 70497.56 103278.37 61821.00 111954.93 

Jun 2018       88096.31 71646.43 104546.19 62938.40 113254.23 
Jul 2018       87182.25 70712.94 103651.57 61994.62 112369.89 

Aug 2018       84668.96 68188.18 101149.74 59463.78 109874.14 

Sep 2018       81245.25 64744.66  97745.85 56009.77 106480.73 

Oct 2018       77633.82 61082.79  94184.84 52321.21 102946.42 

Nov 2018       74473.95 57809.20  91138.69 48987.42  99960.47 

Dec 2018       72235.77 55363.45  89108.09 46431.78  98039.76 

Jan 2019       71173.78 53989.06  88358.49 44892.02  97455.53 

Feb 2019       71321.03 53736.54  88905.53 44427.87  98214.19 
Mar 2019       72518.46 54486.95  90549.96 44941.64 100095.27 

Apr 2019       74469.30 55991.05  92947.56 46209.25 102729.36 

May 2019       76806.46 57921.21  95691.70 47923.96 105688.95 

Jun 2019       79160.12 59930.40  98389.85 49750.80 108569.45 

Jul 2019       81215.45 61708.93 100721.96 51382.81 111048.09 

Aug 2019       82752.65 63029.13 102476.17 52588.13 112917.17 

3.7 Policy Implications 

Based on the fitted model and price forecasts for maize crop, important policy recommendations 

are as follows: 

Storage of maize is easy and the crop can be stored for a long period of time. Once farmers 

harvest their crops, they are encouraged to store for selling during months with high prices.  The 

findings show that prices of maize are forecasted to be very low in January 2018 and continue rising 

up to June 2018 which record the maximum price for this year. Most of the time, prices of maize rise 

after few middlemen have bought large quantities and stored for selling in the future. Farmers are 

therefore encouraged to sell during these months characterized by high prices for maximizing profit.   

Farmers incur costs for inputs like fertilizer, insecticides and preservation chemicals with which 

they expect to compensate soon after harvesting; this is why some farmers accept selling crops at a 

low price. There is a need for the government to renovate and strongly establish cooperatives so that 

prices remain favorable to farmers even during harvesting contrary to individual buyers exploiting 

farmers’ profit through market forces. 

For the year 2019, the prices are characterized by an increasing trend from January which is 

carried over from the previous year. For months with forecasted prices observed high, the 

government should ensure the release of stocks from stores to the market through its agencies like 

National Food Reserve Agency (NFRA) for Tanzania and/or allowing controlled imports. This may 

have direct effects on price stabilization and inflation indirectly for sustainable economic growth 

especially for maize which is easily stored.  

3.8 Conclusion  

In this study, the best linear time series model for maize price was fitted and applied to forecast 

wholesale prices for a horizon of two years which equals twenty four months. The autoregressive 

integrated moving average model was identified and employed in forecasting these prices. The fitted 

model followed the general Box and Jenkins procedures from model identification, estimation, 

diagnostic check and application of the model to obtain forecasts for the specified horizon. Evidence 



Forecasting Wholesale Prices of Maize in Tanzania Using Arima Model                                                       140 

 

based on this study give insights into the need for price monitoring and ensuring policy interventions 

for sustainable economic growth.  
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