Research Article

General Letters in Mathematics (GLM)

Journal Homepage: https://www.refaad.com/Journal/Index/1 ISSN: 2519-9277 (Online) 2519-9269 (Print)

When Doesn't the Interval $]a_{n+k} + P_n, a_{n+k+1} + P_n[(n, k \in \mathbb{N}^*)$ Contain any Primes? Theorem and Counterexamples $(a_n \text{ is the } n^{th} \text{ Prime Number & } P_n \text{ is the } n^{th} \text{ Prime Factorial})$

Hayat Rezguia,*

^aEDPNL Laboratory, Department of Mathematics Ecole Normale Supérieure de Kouba, B.P. 92, Vieux-Kouba, 16038, Algiers, Algeria.

Abstract

The objective of this short paper is to give and prove a main theorem confirming that any interval of the special form:

$$]a_{n+k} + P_n, a_{n+k+1} + P_n[(n \in \mathbb{N}^*)]$$

does not contain any primes, for all $k \in \mathbb{N}^*$ such that $a_{n+k+1} < a_{n+1}^2$ (a_n is the n^{th} prime number & P_n is the n^{th} prime factorial). Then we give several counterexamples of such intervals, which contain primes, when the condition $(a_{n+k+1} < a_{n+1}^2)$ is not satisfied. ©2022 All rights reserved.

Keywords: Prime numbers, prime factorials, *Bertrand's* postulate, the Fundamental theorem of arithmetic, *Fortune's* conjecture. 2020 MSC: 11-XX, 11A41, 11A51.

Notations

Let $n \in \mathbb{N}^*$.

In all what follows, we will denote by:

 a_n the n^{th} prime number and $P_n = a_1.a_2.a_3...a_n$ the n^{th} prime factorial (product of the first n prime numbers).

1. Introduction

There are several works, in the literature, dealing with the problem of the existence or non-existence of prime numbers in certain intervals (subsets of the set of real numbers \mathbb{R}) [2, 5, 6, 7, 8, 9]. In the present manuscript, we will deal with this same problem, but for a specific form of open intervals of \mathbb{R} . This work is original, and can help a lot in solving *Fortune's* conjecture which was recently addressed in various works, as examples, we cite [10, 11, 12, 13].

Email address: rezguihayat@yahoo.fr or hayat.rezgui@g.ens-kouba.dz (Hayat Rezgui)

doi:10.31559/glm2022.12.4.2

^{*}Hayat Rezgui

2. Reminder

We recall *Bertrand's* postulate: [1, 3, 14, 16]

Theorem 2.1. $\forall n \in \mathbb{N}^* : a_{n+1} < 2.a_n$.

3. Main theorem

Proposition 3.1. $\forall n \in \mathbb{N}^*$: The interval $]a_{n+1} + P_n$, $a_{n+2} + P_n[$ does not contain any prime number.

Proof. Let $n \in \mathbb{N}^*$ and $m \in]a_{n+1} + P_n$, $a_{n+2} + P_n[$. Then: $m = m' + P_n$ such that: $a_{n+1} < m' < a_{n+2}$, therefore m' is not prime.

We assume (by the absurd) that m is prime.

Since m' is not prime, it follows from the Fundamental theorem of arithmetic [4, 15] that m' may be written in the following form:

$$m' = a_1^{\beta_1}.a_2^{\beta_2}...a_n^{\beta_n}.a_{n+1}^{\beta_{n+1}}$$
(3.1)

such that: $\beta_1, \beta_2, ..., \beta_n, \beta_{n+1}$ are positive integers.

Now, since $\mathfrak{m}=\mathfrak{m}'+P_\mathfrak{n}$ is prime and $P_\mathfrak{n}=\mathfrak{a}_1.\mathfrak{a}_2.\mathfrak{a}_3...\mathfrak{a}_\mathfrak{n}$, then:

$$\beta_1 = \beta_2 = ... = \beta_n = 0$$
, and hence:

$$m' = a_{n+1}^{\beta_{n+1}} \tag{3.2}$$

So: $a_{n+1} < m' < a_{n+2}$ implies that: $a_{n+1} < a_{n+1}^{\beta_{n+1}} < a_{n+2}$. By **Theorem 2.1.**, it follows that:

$$a_{n+1} < a_{n+1}^{\beta_{n+1}} < 2.a_{n+1}$$
 (contradiction, since $\beta_{n+1} \in \mathbb{N}$ and $a_{n+1} \geqslant 2$). This completes the proof of the proposition.

We therefore generalize the previous proposition (**Proposition 3.1.**), which will constitute a Theorem from now on:

Theorem 3.2. (Generalization of **Proposition 3.1.**)

Let n be a fixed positive integer such that: $n \ge 2$, then:

For all $k \in \mathbb{N}^*$ such that $a_{n+k+1} < a_{n+1}^2$:

The interval $]a_{n+k} + P_n$, $a_{n+k+1} + P_n[$ does not contain any prime number.

Proof. Let n be a fixed positive integer such that: $n \geqslant 2$, and $k \in \mathbb{N}^*$ such that $a_{n+k+1} < a_{n+1}^2$, and let $m \in]a_{n+k} + P_n, a_{n+k+1} + P_n[$. Then:

 $m = m' + P_n$, $a_{n+k} < m' < a_{n+k+1}$, so m' is not prime.

We assume (by the absurd) that m is prime.

It follows from the Fundamental theorem of arithmetic [4, 15] that m' may be written in the following form:

$$m' = a_1^{\beta_1}.a_2^{\beta_2}...a_n^{\beta_n}...a_{n+k}^{\beta_{n+k}}$$
(3.3)

such that: $\beta_1, \beta_2, ..., \beta_{n+k}$ are positive integers.

Now, since $m = m' + P_n$ is prime and $P_n = a_1.a_2.a_3...a_n$, then $\beta_1 = \beta_2 = ... = \beta_n = 0$; and hence:

$$m' = a_{n+1}^{\beta_{n+1}} . a_{n+2}^{\beta_{n+2}} ... a_{n+k}^{\beta_{n+k}}$$
(3.4)

So: $a_{n+k} < m' < a_{n+k+1}$ implies that: $a_{n+k} < a_{n+1}^{\beta_{n+1}}.a_{n+2}^{\beta_{n+2}}...a_{n+k}^{\beta_{n+k}} < a_{n+k+1}$. By the hypothesis $(a_{n+k+1} < a_{n+1}^2)$, it follows that:

 $\alpha_{n+k} < \alpha_{n+1}^{\beta_{n+1}}.\alpha_{n+2}^{\beta_{n+2}}...\alpha_{n+k}^{\beta_{n+k}} < \alpha_{n+k+1} < \alpha_{n+1}^2 \text{, thus: } \alpha_{n+j}^{\beta_{n+j}} < \alpha_{n+1}^2 \leqslant \alpha_{n+j}^2, \forall j \in \mathbb{N}: 1 \leqslant j \leqslant k \text{, hence: } \alpha_{n+j}^{\beta_{n+k}}...\alpha_{n+j}^{\beta_{n+k}} < \alpha_{n+j}^{\beta_{n+k}}...\alpha_{n+j}^{\beta_{n+k}} < \alpha_{n+k+1}^{\beta_{n+k}}...\alpha_{n+j}^{\beta_{n+k}} < \alpha_{n+j}^{\beta_{n+k}}...\alpha_{n+j}^{\beta_{n+k}} < \alpha_{n+k+1}^{\beta_{n+k}}...\alpha_{n+j}^{\beta_{n+k}} < \alpha_{n+k+1}^{\beta_{n+k}}...\alpha_{n+j}^{\beta_{n+k}} < \alpha_{n+k+1}^{\beta_{n+k}}...\alpha_{n+j}^{\beta_{n+k}} < \alpha_{n+j}^{\beta_{n+k}}...\alpha_{n+j}^{\beta_{n+k}} < \alpha_{n+k+1}^{\beta_{n+k}}...\alpha_{n+j}^{\beta_{n+k}} < \alpha_{n+j}^{\beta_{n+k}}...\alpha_{n+j}^{\beta_{n+k}} < \alpha_{n+j}^{\beta_{n+k}}...\alpha_{n+j}^{\beta_{n+k}} < \alpha_{n+k+1}^{\beta_{n+k}}...\alpha_{n+j}^{\beta_{n+k}} < \alpha_{n+j}^{\beta_{n+k}}...\alpha_{n+j}^{\beta_{n+k}} < \alpha_{n+j}^{\beta_{n+k}} < \alpha_{n+j}^{\beta_{$ $\beta_{n+j} \in \{0,1\}, \forall j \in \mathbb{N} : 1 \leqslant j \leqslant k,$

because $a_{n+j} \ge 2, \forall j \in \mathbb{N} : 1 \le j \le k$.

On the other hand, it is not possible for two exponents β_{n+j} and $\beta_{n+j'}$ $(j \neq j', 1 \leq j, j' \leq k)$ to equal 1

together, because in this case we get:

 $a_{n+1}^2 < a_{n+j}.a_{n+j'} \leqslant a_{n+1}^{\beta_{n+1}}.a_{n+2}^{\beta_{n+2}}...a_{n+j}^{\beta_{n+j}}...a_{n+j'}^{\beta_{n+j'}}...a_{n+k}^{\beta_{n+k}} < a_{n+k+1} < a_{n+1}^2 \text{ (contradiction)}.$ So, only two cases are possible:

1. First case: $\beta_{n+j} = 0, \forall j \in \mathbb{N} : 1 \leqslant j \leqslant k$.

In this case: m' = 1 but this is a contradiction because $a_{n+k} < m' < a_{n+k+1}$.

 $\text{2. Second case: } \exists ! j' \in \mathbb{N}, 1 \leqslant j' \leqslant k : \beta_{\mathfrak{n}+j'} = 1 \text{ and } \forall j \in \mathbb{N} : 1 \leqslant j \leqslant k, (j \neq j') : \beta_{\mathfrak{n}+j} = 0.$

In this case: $m' = a_{n+j'}$, therefore m' is prime, but this is also rejected because m' is not prime.

Thus, the interval $]a_{n+k} + P_n$, $a_{n+k+1} + P_n[$ doesn't contain any primes. This completes the proof of the theorem.

Remark 3.3. We note that there is a direct relationship between the intervals

 $]a_{n+k} + P_n, a_{n+k+1} + P_n[(n, k \in \mathbb{N}^*)]$ and *Fortune's* conjecture which has been proved to be correct in a particular case in the recent article [10].

4. Counterexamples showing that the interval $]a_{n+k} + P_n$, $a_{n+k+1} + P_n[(n, k \in \mathbb{N}^*)]$ may contain prime numbers when $a_{n+k} > a_{n+1}^2$

In this section, we will present 10 counterexamples showing that it is very likely that the interval $]a_{n+k} + P_n$, $a_{n+k+1} + P_n[$ may contain prime numbers when $a_{n+k} > a_{n+1}^2$ (so the condition $(a_{n+k+1} < a_{n+1}^2)$) is not satisfied).

4.1. First counterexample

For n = 1 and k = 8:

We have indeed $a_{n+k} = a_9 = 23 > 9 = a_2^2 = a_{n+1}^2$ and also, the interval $]a_{n+k} + P_n, a_{n+k+1} + P_n[=]a_9 + P_1, a_{10} + P_1[=]23 + 2, 29 + 2[=]25, 31[contains the prime number 29.$

4.2. Second counterexample

For n = 2 and k = 14:

We have indeed $a_{n+k} = a_{16} = 53 > 25 = a_3^2 = a_{n+1}^2$ and also, the interval $]a_{n+k} + P_n, a_{n+k+1} + P_n[=]a_{16} + P_2, a_{17} + P_2[=]53 + 6, 59 + 6[=]59, 65[contains the prime number 61.$

4.3. Third counterexample

For n = 3 and k = 58:

We have indeed $a_{n+k} = a_{61} = 283 > 49 = a_4^2 = a_{n+1}^2$ and also, the interval $]a_{n+k} + P_n$, $a_{n+k+1} + P_n[=]a_{61} + P_3$, $a_{62} + P_3[=]283 + 30,293 + 30[=]313,323[$ contains the prime number 317.

4.4. Fourth counterexample

For n = 4 and k = 30:

We have indeed $a_{n+k} = a_{34} = 139 > 121 = a_5^2 = a_{n+1}^2$ and also, the interval $]a_{n+k} + P_n, a_{n+k+1} + P_n[=]a_{34} + P_4, a_{35} + P_4[=]139 + 210, 149 + 210[=]349, 359[contains the prime number 353.$

4.5. Fifth counterexample

For n = 5 and k = 216:

We have indeed $a_{n+k} = a_{221} = 1381 > 169 = a_6^2 = a_{n+1}^2$ and also, the interval $]a_{n+k} + P_n$, $a_{n+k+1} + P_n[=]a_{221} + P_5$, $a_{222} + P_5[=]1381 + 2310$, 1399 + 2310[=]3691, 3709[contains the prime number 3701.

4.6. Sixth counterexample

For n = 6 and k = 85:

We have indeed $a_{n+k} = a_{91} = 467 > 289 = a_7^2 = a_{n+1}^2$ and also, the interval $]a_{n+k} + P_n$, $a_{n+k+1} + P_n[=]a_{91} + P_6$, $a_{92} + P_6[=]467 + 30030$, 479 + 30030[=]30497, 30529[contains the prime number 30509.

4.7. Seventh counterexample

For n = 7 and k = 173:

We have indeed $a_{n+k} = a_{180} = 1069 > 361 = a_8^2 = a_{n+1}^2$ and also, the interval $]a_{n+k} + P_n$, $a_{n+k+1} + P_n[=]a_{180} + P_7$, $a_{181} + P_7[=]1069 + 510510$, 1087 + 510510[=]511579, 511597[contains the prime number 511583.

4.8. Eighth counterexample

For n = 8 and k = 113:

We have indeed $a_{n+k} = a_{121} = 661 > 529 = a_9^2 = a_{n+1}^2$ and also, the interval $]a_{n+k} + P_n$, $a_{n+k+1} + P_n[=]a_{121} + P_8$, $a_{122} + P_8[=]661 + 9699690$, 673 + 9699690[=]9700351, 9700363[contains the prime number 9700357.

4.9. Ninth counterexample

For n = 9 and k = 318:

We have indeed $a_{n+k} = a_{327} = 2179 > 841 = a_{10}^2 = a_{n+1}^2$ and also, the interval $]a_{n+k} + P_n$, $a_{n+k+1} + P_n[=]a_{327} + P_9$, $a_{328} + P_9[=]2179 + 223092870$, 2203 + 223092870[=]223095049, 223095073[contains the prime number 223095071.

4.10. Tenth counterexample

For n = 10 and k = 580:

We have indeed $a_{n+k} = a_{590} = 4297 > 961 = a_{11}^2 = a_{n+1}^2$ and also, the interval $]a_{n+k} + P_n$, $a_{n+k+1} + P_n[=]a_{590} + P_{10}$, $a_{591} + P_{10}[=]4297 + 6469693230$, 4327 + 6469693230[=]6469697527, 6469697557[contains the prime number 6469697537.

5. Conclusion

In this manuscript, we have shown that any interval of the form $]a_{n+k}+P_n, a_{n+k+1}+P_n[(n \in \mathbb{N}^*)$ such that: $k \in \mathbb{N}^*$, does not contain any prime number, provided that the condition $a_{n+k+1} < a_{n+1}^2$ is satisfied. Moreover, we have given several counterexamples proving that these same intervals may contain prime numbers, when the condition $a_{n+k+1} < a_{n+1}^2$ is not satisfied.

In conclusion, the content of this article can help a lot in solving *Fortune*'s conjecture which is still an open problem in number theory.

References

- [1] B. R. Arif, *An Inductive Proof of Bertrand's Postulate*, GANIT: J. Bangladesh Math. Soc., (ISSN 1606-3694) **38** (2018), 85–87, DOI: https://doi.org/10.3329/ganit.v38i0.39788 https://doi.org/10.3329/ganit.v38i0.39788
- [2] K. D. Balliet, On The Prime Numbers In Intervals, (2017), 1–71, arXiv:1706.01009 [math.NT]. 2
- [3] J. Barkley Rosser, L. Schoenfeld, Approximate Formulas for Some Functions of Prime Numbers, Illinois J. Math., 6 1 (1962), 64–94, DOI= "10.1215/ijm/1255631807" https://doi.org/10.1215/ijm/1255631807
- [4] R. Crandall, C. Pomerance, *Prime Numbers. A Computational Perspective*, Springer Science+Business Media, U.S.A, (2005). 1
- [5] C. Mattner, *Prime Numbers in Short Intervals*, A thesis submitted for the degree of Bachelor of Science (Honours), Australian National University, (2017), 1–60 2
- [6] A. Mitra, G. Paul, U. Sarkar, Some Conjectures on the Number of Primes n in Certain Intervals, (2009), 1–6, arXiv:0906.0104v1[math.NT]. 3, 3
- [7] J. Nagura, On The Interval Containing At Least One Prime Number, Proc. Japan. Acad., 28 (1952), 177–181. https://doi.org/10.3792/pja/1195570997
- [8] L. Panaitopol, Intervals Containing Prime Numbers, NNTDM., 8, 4 (2001), 14–148. 1
- [9] G. A. Paz, On the Interval [n, 2n]: Primes, Composites and Perfect Powers, Gen. Math. Notes, 15 1 (2013), 1–15. 1
- [10] H. Rezgui, New Explorations and Remarkable Inequalities Related to Fortune's Conjecture and Fortunate Numbers, Submitted, (2022), 1–25 1

- [11] H. Rezgui, On the strong relationship between the intervals ($\left[a_{n+1}+P_n,a_{n+1}^2+P_n\right]$, $n\in\mathbb{N}^*$) and Fortune's conjecture, a_n is the n^{th} prime number & P_n is the n^{th} primorial number, 1^{st} International Workshop on Applied Mathematics (1st-IWAM'2022, UFMC1. Constantine, ALGERIA (6–8 December 2022)). 1
- [12] H. Rezgui, An affirmative answer to Fortune's conjecture for all known fortunate numbers, with an optimal original inequality, 1st International Workshop on Applied Mathematics (1st-IWAM'2022, UFMC1. Constantine, ALGERIA (6–8 December 2022)). 1
- [13] H. Rezgui, *Une preuve partielle de l'exactitude de la conjecture de Fortune, dans un cas particulier*, Nouvelles Tendances en Mathématiques Théoriques et Computationnelles, Tamanghasset, ALGERIA (8–9 November 2022). 1, 3.3
- [14] P. Ribenboim, The Little Book of Bigger Primes, Springer-Verlag, New York, (2004). 1
- [15] D. Rosenthal, Da. Rosenthal, P. Rosenthal, *The Fundamental Theorem of Arithmetic*, In: A Readable Introduction to Real Mathematics. Undergraduate Texts in Mathematics. Springer, Cham, (2014), 31–34 1
- [16] D. Wells, Prime Numbers. The Most Mysterious Figures in Math, Wiley, New Jersey, (2005). 1