Research Article

General Letters in Mathematics (GLM)

Journal Homepage: https://www.refaad.com/Journal/Index/1 ISSN: 2519-9277 (Online) 2519-9269 (Print)

Soft Pre Separation Axioms and Function with Soft Pre Closed Graph

Nehmat K. Ahmeda,*, Alias B. Khalafb

Abstract

Several notions on soft topology are studied and their basic properties are investigated by using the concept of soft pre open sets and soft pre closure operator which are derived from the basics of soft set theory established by Molodtsov [1]. In this paper we introduce some soft separation axioms called Soft pre R_0 and soft pre R_1 in soft topological spaces which are defined over an initial universe with a fixed set of parameters. Many characterizations and properties of these spaces have been demonstrated. Necessary and sufficient conditions for a soft topological space to be a soft pre R_1 space for t=0, 1 were also presented. Furthermore, the concept of functions with soft pre closed graph and soft pre cluster set are defined. Many results on these two concepts are proved. Also, it is proved that a function has a soft pre closed graph if and only if its soft pre cluster set is degenerate. ©2022 All rights reserved.

Keywords: Soft pre open set, soft T_1 space, soft $-pre\ R_i$ for i=0,1, Soft pre closure, soft pre kernel.

2010 MSC: Primary: 54A05, 54A10, Secondary: 54C05

1. Introduction

The study of soft sets and their properties was initiated by Molodtsov [1]. Many researchers have followed him, after his introduction of soft set theory as a common mathematical application in dealing with the vagueness of not well defined objects. Several researchers have been applying it on formal modeling, reasoning and computing such as, Shabir and Naz [2], they have described the soft topological spaces and its basic notations in detail. In several papers mathematicians gave many different and interesting topological concepts such as, connectedness [3], compactness [4], separation axioms [5] so on, and they have been extended in soft topological spaces. This paper aims to introduce and give a detailed study to known kinds of separation axioms, by using notations of soft pre open sets and soft pre closure operator.

2. Preliminaries

Throughout the present paper, X will be a nonempty initial universal set and E will be a set of parameters and A be a non-empty subset of E. A pair (F, A) is called a soft set over X, where F is a mapping

Email addresses: nehmat.ahmed@su.edu.krd (Nehmat K. Ahmed), aliasbkhalaf@gmail.com (Alias B. Khalaf)

doi: 10.31559/glm2022.12.2.4

^aDepartment of Mathematics, College of Education, Salahaddin University, Kurdistan-Region, Iraq

^bDepartment of Mathematics, College of Science, University of Duhok. Kurdistan Region-Iraq

^{*}Corresponding author

 $F: A \to P(X)$. The collection of soft sets (F, A) over a universe X and the parameter set A is a family of soft sets denoted by $SP(X)_A$.

Here are some definitions and results required in the sequel which can be found in [3], [5], [6], [7], [8] and [9].

Definition 2.1. For two soft sets (F, A) and (G, B) over a common universe X, we say that (F, A) is a soft subset of (G, B), if (F, A) is a soft subset of (F, A) is a soft s

2. for all $e \in A$, $F(e) \subseteq G(e)$. We write $(F, A) \sqsubseteq (G, B)$.

Definition 2.2. The complement of a soft set (F, A) is denoted by $(F, A)^c$ or $\tilde{X} \setminus (F, A)$ and is defined by $(F, A)^c = (F^c, A)$ where $F^c : A \to P(X)$ is a mapping given by $F^c (e) = X \setminus F(e)$, for all $e \in A$.

Definition 2.3. A soft set (F, A) over X is said to be an empty soft set denoted by $\tilde{\Phi}$ if for all $e \in A$, $F(e) = \Phi$ and (F, A) over X is said to be absolute soft set denoted by A if for all $e \in A$, F(e) = X.

Theorem 2.4. The union of two soft sets of (F, A) and (G, B) over the common universe X is the soft set

$$(\mathsf{H},\,\mathsf{C})\,=\,(\mathsf{F},\,\mathsf{A})\,\sqcup\,(\mathsf{G},\,\mathsf{B}), \textit{where}\;\mathsf{C}\,=\,\mathsf{A}\cup\mathsf{B}\;\textit{and}, \mathsf{H}\,(\mathsf{e}) = \left\{ \begin{array}{c} \mathsf{F}(\mathsf{e})\,:\,i\,\mathsf{f}\,\mathsf{e}\in\mathsf{A}\,-\,\mathsf{B}\\ \mathsf{G}(\mathsf{e})\,:\,i\,\mathsf{f}\,\mathsf{e}\in\mathsf{B}\,-\,\mathsf{A}\\ \mathsf{F}(\mathsf{e})\cup\mathsf{G}(\mathsf{e})\,:\,i\,\mathsf{f}\,\mathsf{e}\in\mathsf{A}\cap\mathsf{B} \end{array} \right. \textit{for all }\mathsf{e}\in\mathsf{C}.$$

In particular, $(F, A) \sqcup (G, A) = (H, A)$ where $H(e) = F(e) \cup G(e)$ for all $e \in A$.

Definition 2.5. The intersection (H, C) of two soft sets (F, A) and (G, B) over a common universe X, denoted $(F, A) \sqcap (G, B)$, is defined as $C = A \cap B$, and $H(e) = F(e) \cap G(e)$ for all $e \in C$. In particular, $(F, A) \sqcap (G, A) = (H, A)$ where $H(e) = F(e) \cap G(e)$ for all $e \in A$.

Definition 2.6. Let $x \in X$, then (x, E) denotes the soft set over X for which $x(e) = \{x\}$, for all $e \in E$. Let (F, E) be a soft set over X and $x \in X$. We say that $x \in (F, E)$ read as x belongs to the soft set (F, E) whenever $x \in F(e)$ for all $e \in E$.

Definition 2.7. The soft set (F, E) is called a soft point, denoted by (x_e, E) or x_e , if for the element $e \in E$, $F(e) = \{x\}$ and $F(e) = \phi$ for all $e \in E \setminus \{e\}$. We say that $x \in G(E)$ if $x \in G(E)$. Two soft points x_e and y_e , are distinct if either $\neq y$ or $e \neq e'$. It is clear that $x_e \in (x, E)$ always.

Definition 2.8. [2] Let τ be a collection of soft sets over a universe X with a fixed set A of parameters, then $\tau \subseteq SP(X)_A$ is called a soft topology on X with a fixed set A if,

- 1. $\widetilde{\phi}$, \widetilde{X} belong to τ .
- 2. The union of any number of soft sets in τ belongs to τ .
- 3. The intersection of any two soft sets in τ belongs to τ .

The triplet (X, A, τ) is called a soft topological space over X. The members of τ are called soft open sets in \tilde{X} and complements of them are called soft closed sets in \tilde{X} . Soft operations are denoted by usual set theoretical operations with '~' symbol above. Soft interior and soft closure are denoted by \tilde{s} int and \tilde{s} cl respectively.

Theorem 2.9. [6] Arbitrary union of soft open sets is soft open and finite intersection of soft closed sets is soft closed.

Definition 2.10. [3] Let (X, A, τ) be a soft topological space and let (G, A) be a soft set. Then

- 1. $\tilde{s}cl(G, A) = \bigcap \{(K, A) : (K, A) \text{ is soft closed and } (G, A) \subseteq (K, A)\}$
- 2. $\tilde{s}int(G, A) = \bigcup \{(H, A) : (H, A) \text{ is soft open and } (H, A) \subseteq (G, A)\}$

Definition 2.11. [3] Let (X, τ, A) be a soft topological space over \tilde{X} , and (G, A) be a soft set over \tilde{X} and $x_{\text{ff}} \in \tilde{X}$. Then (G, A) is said to be a soft neighborhood of x_{ff} if there exists a soft open set (H, A) such that $x_{\text{ff}} \in (H, A) \subseteq ((G, A)$.

Definition 2.12. [10] Let (X, τ, A) and (Y, μ, A) be two soft topological spaces. A soft mapping $f_{pu} : \tilde{X} \to \tilde{Y}$ is called soft pre continuous if $f_{pu}^{-1}((G, A)) \in PO(X, \tau, A)$ for all $(G, A) \in PO(Y, \mu, A)$.

Definition 2.13. [11] A soft filter \mathcal{F} converges to a soft point $e_F \in \tilde{X}$ in a soft topological space (X, τ, A) , if every soft neighborhood of the soft point e_F belongs to the soft filter \mathcal{F} . It can be denoted by $\mathcal{F} \rightarrow e_F$.

Definition 2.14. [12] \mathcal{F} be a soft filter in a soft topological spaces (X, τ, A) , a soft point e_F is called soft accumulation point of \mathcal{F} , if $e_F \in \tilde{s}cl(G, A)$ for any $(G, A) \in \mathcal{F}$.

Theorem 2.15. [4] A soft filter F converges to a soft point x_e , then x_e is the soft accumulation point of F, if F is a maximal soft filter and x_e is a soft accumulation point of F, then the soft filter F converges to the soft point x_e .

Theorem 2.16. [13] Let $f_{pu} : SP(X)_A \to SP(Y)_B$ be a soft function. If F is a soft ultra filter in X, then $f_{pu}^{-1}(F)$ is a soft ultra filter in Y.

Definition 2.17. [5] A soft topological space (X, τ, A) is said to be:

- 1. Soft pre T_o , if for each pair of distinct soft points x_e , $y_{e'} \in SP(X)_A$, there exist soft pre open sets (F, A) and (G, A) such that either $x_e \in (F, A)$ and $y_{e'} \notin (F, A)$ or $y_{e'} \in (G, A)$ and $x_e \notin (G, A)$.
- 2. Soft pre T_1 , if for each pair of distinct soft points x_e , $y_e \in SP(X)_A$, there exist two soft pre open sets (F, A) and (G, A) such that $x_e \in (F, A)$ but $y_e \notin (F, A)$ and $y_e \in (G, A)$ but $x_e \notin (G, A)$.
- 3. Soft pre T_2 , if for each pair of distinct soft points x_e , $y_e \in SP(X)_A$, there exist two disjoint soft pre open sets (F, A) and (G, A) containing x_e and y_e , respectively

Remark 2.18. 1. Every soft T_1 -space is a soft T_0 -space.

2. Every soft T_2 -space is a soft T_1 -space

Theorem 2.19. [3] A space \tilde{X} is soft pre T_1 if and only if each soft point is soft pre closed.

Theorem 2.20. [8] A mapping $f: X \to Y$ is soft pre irresolute mapping if and only if the inverse image of every soft pre open set in Y is soft pre open set in X.

3. Soft Pre R_0 and soft pre R_1 Spases

In this section we define two new types of spaces called soft pre R_i spaces for i = 0, 1.

Definition 3.1. A soft topological space (X, τ, A) is called soft pre R_0 if for every soft pre open set (F, A), $\operatorname{spcl}(\{x_\alpha\}) \subseteq (F, A)$ for every $x_\alpha \in (F, A)$.

Definition 3.2. Let (X, τ, A) be a soft topological space and $(F, A) \subseteq \tilde{X}$, then soft pre kernel of (F, A) is defined to be the intersection of all pre open sets containing (F, A) and denoted by $\tilde{s}pker(F, A)$ that is $\tilde{s}pker(F, A) = \bigcap \{(G, A) \in \tilde{s}pO(X), (F, A) \subseteq (G, A)\}.$

Lemma 3.3. Let (X, τ, A) be a soft topological space, and $x_{\alpha} \in \tilde{X}$ then $y_{\alpha^{\circ}} \in \tilde{spker}(\{x_{\alpha}\})$ if and only if $x_{\alpha} \in \tilde{spcl}(\{y_{\alpha^{\circ}}\})$.

Proof. Suppose that $x_{\alpha} \notin \operatorname{\tilde{s}pker}(F,A)$, then there exists a soft pre open set (F,A) containing x_{α} such that $y_{\alpha^{\circ}} \notin (F,A)$. Therefore, we have $x_{\alpha} \notin \operatorname{\tilde{s}pcl}(\{y_{\alpha^{\circ}}\})$. The proof of converse case can be done similarly. \square

Theorem 3.4. For a soft topological space (X, τ, A) the following properties are equivalent:

- 1. (X, τ, A) is \tilde{spR}_0 .
- 2. For any $(K,A) \in \tilde{sp}C(X)$ and $x_{\alpha} \notin (K,A)$ there exists $(F,A) \in \tilde{sp}O(X)$ such that $(K,A) \subseteq (F,A)$ and $x_{\alpha} \notin (F,A)$.
- 3. For any $(K, A) \in \tilde{spC}(X)$ and $x_{\alpha} \notin (K, A)$ implies that $(K, A) \cap \tilde{spcl}(\{x_{\alpha}\}) = \emptyset$.

4. For any distinct soft points $x_{\alpha}, y_{\alpha^{\circ}} \in \tilde{X}$ either $\tilde{s}pcl(\{x_{\alpha}\}) = \tilde{s}pcl(\{y_{\alpha^{\circ}}\})$ or $\tilde{s}pcl(\{x_{\alpha}\}) \cap \tilde{s}pcl(\{y_{\alpha^{\circ}}\}) = \widetilde{\varphi}$. Proof. $1 \to 2$. Let $(K, A) \in \tilde{s}pC(X)$ and $x_{\alpha} \notin (K, A)$. Then by $1 \tilde{s}pcl(\{x_{\alpha}\}) \subseteq \tilde{X} \setminus (K, A)$, let $(F, A) = \tilde{X} \setminus (K, A)$, then $(F, A) \in \tilde{s}pO(X)$, $(K, A) \subseteq (F, A)$ and $x_{\alpha} \notin (F, A)$. $2 \to 3$. Let $(K, A) \in \tilde{s}pC(X)$ and $x_{\alpha} \notin (K, A)$. Then there exists $(F, A) \in \tilde{s}pO(X)$ such that $(K, A) \subseteq (F, A)$ and $x_{\alpha} \notin (F, A)$. Since $(K, A) \subseteq (F, A)$, so by $2 (F, A) \cap \tilde{s}pcl(\{x_{\alpha}\}) = \widetilde{\emptyset}$, this implies that $(K, A) \cap \tilde{s}pcl(\{x_{\alpha}\}) = \widetilde{\emptyset}$ $3 \to 4$. Let x_{α} and $y_{\alpha^{\circ}}$ be two distinct soft points of \tilde{X} . Suppose that $\tilde{s}pcl(\{x_{\alpha}\}) \neq \tilde{s}pcl(\{y_{\alpha^{\circ}}\})$, then there exist a soft point z_{α} such that $z_{\alpha} \in \tilde{s}pcl(\{x_{\alpha}\})$ and $z_{\alpha} \notin \tilde{s}pcl(\{y_{\alpha^{\circ}}\})$ [or $z_{\alpha} \in \tilde{s}pcl(\{y_{\alpha^{\circ}}\})$ such that $z_{\alpha} \notin \tilde{s}pcl(\{x_{\alpha}\})$] and there exists $(F, A) \in \tilde{s}pO(X)$ such that $y_{\alpha^{\circ}} \notin (F, A)$ and $z_{\alpha} \in (F, A)$, hence $x_{\alpha} \in (F, A)$, therefore , we have $x_{\alpha} \notin \tilde{s}pcl(\{y_{\alpha^{\circ}}\})$ by 3 we obtain $\tilde{s}pcl(\{x_{\alpha}\}) \cap \tilde{s}pcl(\{y_{\alpha^{\circ}}\}) = \widetilde{\emptyset}$.

 $4 \to 1$. Let $F,A \in \mathfrak{sp}O(X)$ and $x_{\alpha} \in (F,A)$, for each $y_{\alpha^{\circ}} \notin (F,A)$. Then $x_{\alpha} \neq y_{\alpha^{\circ}}$ and $x_{\alpha} \notin \mathfrak{spcl}(\{y_{\alpha^{\circ}}\})$, this shows that $\mathfrak{spcl}(\{x_{\alpha}\}) \neq \mathfrak{spcl}(\{y_{\alpha^{\circ}}\})$, by 4 we have $\mathfrak{spcl}(\{x_{\alpha}\}) \cap \mathfrak{spcl}(\{y_{\alpha^{\circ}}\}) = \widetilde{\emptyset}$, for each $y_{\alpha^{\circ}} \in \widetilde{X} \setminus (F,A)$. On the other hand, since $(F,A) \in \mathfrak{sp}O(X)$ and $y_{\alpha^{\circ}} \in \widetilde{X} \setminus (F,A)$, we have $\mathfrak{spcl}(\{y_{\alpha^{\circ}}\}) \subseteq \widetilde{X} \setminus (F,A)$. Hence $\widetilde{X} \setminus (F,A) = \cup \mathfrak{spcl}(\{y_{\alpha^{\circ}}\})$ where $y_{\alpha^{\circ}} \in \widetilde{X} \setminus (F,A)$. Therefore, we obtain that $\widetilde{X} \setminus (F,A) \cap \mathfrak{spcl}(\{x_{\alpha}\}) = \widetilde{\emptyset}$ and $\mathfrak{spcl}(\{x_{\alpha}\}) \subseteq (F,A)$. This shows that (X,τ,A) is soft pre R_0 .

Theorem 3.5. A topological space (X, τ, A) is a soft pre R_0 space if and only if for any x_{α} and $y_{\alpha^{\circ}}$ in \widetilde{X} , $\operatorname{spcl}(\{y_{\alpha^{\circ}}\}) \neq \operatorname{spcl}(\{y_{\alpha^{\circ}}\})$ implies $\operatorname{spcl}(\{y_{\alpha^{\circ}}\}) \cap \operatorname{spcl}(\{y_{\alpha^{\circ}}\}) = \widetilde{\varphi}$

Proof. This is an immediate consequence of Theorem 3.4.

Lemma 3.6. The following statements are equivalent for any distinct soft points x_{α} and $y_{\alpha^{\circ}}$ in a soft topological space (X, τ, A) .

- 1. $\operatorname{\tilde{s}pker}(\{x_{\alpha}\}) \neq \operatorname{\tilde{s}pker}(\{y_{\alpha^{\circ}}\}),$
- 2. $\operatorname{\tilde{s}pcl}(\{x_{\alpha}\}) \neq \operatorname{\tilde{s}pcl}(\{y_{\alpha}\})$.

Proof. 1 → 2: Suppose that $\S{pker}(\{x_\alpha\}) \neq \S{pker}(\{y_{\alpha^\circ}\})$. Then there exists a soft point $z_\alpha \in \S{pker}(\{z_\alpha\})$ and $z_\alpha \notin \S{pker}(\{y_{\alpha^\circ}\})$. Since $z_\alpha \in \S{pker}(\{x_\alpha\})$ so $\{x_\alpha\} \cap \S{pcl}(\{z_\alpha\}) \neq \widetilde{\emptyset}$. This implies that $x_\alpha \in \S{pcl}(\{z_\alpha\})$ and since $z_\alpha \notin \S{pker}(\{y_{\alpha^\circ}\})$ we have $\{y_{\alpha^\circ}\} \cap \S{pcl}(\{z_\alpha\}) = \widetilde{\emptyset}$. Since $x_\alpha \in \S{pcl}(\{z_\alpha\})$, so $\S{pcl}(\{x_\alpha\}) \subseteq \S{pcl}(\{z_\alpha\})$ and hence $\{y_{\alpha^\circ}\} \cap \S{pcl}(\{x_\alpha\}) = \widetilde{\emptyset}$. Therefore, $\S{pcl}(\{x_\alpha\}) \neq \S{pcl}(\{y_{\alpha^\circ}\})$. 2 → 1: Suppose that $\S{pcl}(\{x_\alpha\}) \neq \S{pcl}(\{y_{\alpha^\circ}\})$. Then there exists a soft point z_α in X such that $z_\alpha \in \S{pcl}(\{x_\alpha\})$ and $z_\alpha \notin \S{pcl}(\{y_{\alpha^\circ}\})$ there exists an soft pre open set (F,A) containing z_α (and hence x_α) but not y_{α° , that is $y_{\alpha^\circ} \notin \S{pker}(\{x_\alpha\})$. Therefore, $\S{pker}(\{x_\alpha\}) \neq \S{pker}(\{y_{\alpha^\circ}\})$.

Theorem 3.7. A soft topological space (X, τ, A) is soft pre R_0 if and only if for any two distinct soft points $x_{\alpha}, y_{\alpha^{\circ}} \in \widetilde{X}$, $\widetilde{spker}(\{x_{\alpha}\}) \neq \widetilde{spker}(\{y_{\alpha^{\circ}}\})$ implies $\widetilde{spker}(\{x_{\alpha}\}) \cap \widetilde{spker}(\{y_{\alpha^{\circ}}\}) = \widetilde{\varphi}$.

Proof. Necessity, suppose that (X, τ, A) is soft pre R_0 . Thus by Lemma 3.6, for any distinct soft point x_α and y_{α° in \tilde{X} , if $\tilde{s}pker(\{x_\alpha\}) \neq \tilde{s}pker(\{y_{\alpha^\circ}\})$, then $\tilde{s}pcl(\{x_\alpha\}) \neq \tilde{s}pcl(\{y_{\alpha^\circ}\})$. Assume that $z_\alpha \in \tilde{s}pker(\{x_\alpha\}) \cap \tilde{s}pker(\{y_{\alpha^\circ}\})$, since $z_\alpha \in \tilde{s}pker(\{x_\alpha\})$, and Lemma 3.4 it follows that $x_\alpha \in \tilde{s}pcl(\{z_\alpha\})$. Since $x_\alpha \in \tilde{s}pcl(\{x_\alpha\})$, by Theorem 3.4 $\tilde{s}pcl(\{x_\alpha\}) = \tilde{s}pcl(\{z_\alpha\})$. Similarly we have $\tilde{s}pcl(\{x_\alpha\}) = \tilde{s}pcl(\{y_{\alpha^\circ}\})$, which is contradiction. Therefore, $\tilde{s}pker(\{x_\alpha\}) \cap \tilde{s}pker(\{y_{\alpha^\circ}\}) = \tilde{\phi}$.

Sufficiency, let (X, τ, A) be a soft topological space such that for any distinct soft points x_{α} and $y_{\alpha^{\circ}}$ in X, $\S pker(\{x_{\alpha}\}) \neq \S pker(\{y_{\alpha^{\circ}}\})$ implies that, $\S pker(\{x_{\alpha}\}) \cap \S pker(\{y_{\alpha}\}) = \widetilde{\varphi}$. If $\S pcl(\{x_{\alpha}\}) \neq \S pcl(\{y_{\alpha^{\circ}}\})$, hence by Lemma 3.6, $\S pker(\{x_{\alpha}\}) \neq \S pker(\{y_{\alpha^{\circ}}\})$. Therefore, $\S pker(\{x_{\alpha}\}) \cap \S pker(\{y_{\alpha^{\circ}}\}) = \widetilde{\varphi}$. Which implies that $\S pcl(\{x_{\alpha}\}) \cap \S pcl(\{y_{\alpha^{\circ}}\}) = \widetilde{\varphi}$, because $z_{\alpha} \in \S pcl(\{x_{\alpha}\})$ implies that $x_{\alpha} \in \S pker(\{z_{\alpha}\})$ so $\S pker(\{x_{\alpha}\}) \cap \S pker(\{y_{\alpha^{\circ}}\}) \neq \widetilde{\varphi}$. By hypothesis we have, $\S pker(\{x_{\alpha}\}) = \S pker(\{z_{\alpha}\})$, then $z_{\alpha} \in \S pcl(\{x_{\alpha}\}) \cap \S pcl(\{y_{\alpha^{\circ}}\})$ implies that $\S pker(\{x_{\alpha}\}) = \S pker(\{z_{\alpha}\}) = \S pker(\{y_{\alpha^{\circ}}\})$, this is contradiction. Therefore, $\S pcl(\{x_{\alpha}\}) \cap \S pcl(\{y_{\alpha^{\circ}}\}) = \widetilde{\varphi}$. Hence by Theorem 3.4, (X, τ, A) is soft pre R_0 .

Theorem 3.8. For a soft topological space (X, τ, A) , the following statements are equivalent:

- 1. (X, τ, A) is soft pre R_0 .
- 2. For any non-empty soft set (F,A) and $(G,A) \in \tilde{spO}(X)$ such that $(F,A) \cap (G,A) \neq \tilde{\varphi}$, there exists $(K,A) \in \tilde{spC}(X)$ such that $(F,A) \cap (K,A) \neq \tilde{\varphi}$ and $(K,A) \subseteq (G,A)$.
- 3. For any $(G, A) \in \tilde{sp}O(X)$, $(G, A) = \bigcup \{(K, A) \in \tilde{sp}C(X); (K, A) \subseteq (G, A)\}$
- 4. For any $(K, A) \in \check{sp}C(X)$, $(K, A) = \cap \{(G, A) \in \check{sp}O(X); (K, A) \subseteq (G, A)\}$
- 5. For any $x_{\alpha} \in \tilde{X}$, $\operatorname{\tilde{spcl}}(\{x_{\alpha}\}) \subseteq \operatorname{\tilde{spker}}(\{x_{\alpha}\})$.

Proof. 1→2: Let (F, A) be a non empty subset of \tilde{X} and (G, A) ∈ $\tilde{s}pO(X)$ such that (F, A) \cap (G, A) \neq $\tilde{\phi}$. Let $x_{\alpha} \in (F, A) \cap (G, A)$. Since $x_{\alpha} \in (G, A) \subseteq \tilde{s}pO(X)$, so by 1, we have $\tilde{s}pcl(\{x_{\alpha}\}) \subseteq (G, A)$. Set $(K, A) = \tilde{s}pcl(\{x_{\alpha}\})$ then $(K, A) \in \tilde{s}pC(X)$ such that $(K, A) \subseteq (G, A)$. and $(F, A) \cap (K, A) \neq \tilde{\phi}$.

 $2 \rightarrow 3$: Let $(G,A) \in \tilde{s}pO(X)$. Then $\cup \{(K,A) \in \tilde{s}pC(X); (K,A) \subseteq (G,A)\}$. Now let x_{α} be any soft point of (G,A). By 2 there exists $(K,A) \in \tilde{s}pC(X)$, such that $x_{\alpha} \in (K,A)$ and $(K,A) \subseteq (G,A)$. Therefore, we have $x_{\alpha} \in (K,A) \subseteq \cup \{(K,A) \in \tilde{s}pC(X); (K,A) \subseteq (G,A)\}$. Hence $(G,A) = \cup \{(K,A) \in \tilde{s}pC(X); (K,A) \subseteq (G,A)\}$. $3 \rightarrow 4$: Obvious.

 $4 \rightarrow 5$: Let x_{α} be any soft point of \widetilde{X} and $y_{\alpha^{\circ}} \notin \widetilde{\operatorname{spker}}(\{x_{\alpha}\})$. So there exists $(H, A) \in \widetilde{\operatorname{spO}}(X)$ such that $x_{\alpha} \in (H, A)$ and $y_{\alpha^{\circ}} \notin (H, A)$. Hence $\widetilde{\operatorname{spcl}}(\{y_{\alpha}\}) \cap (H, A) = \widetilde{\varphi}$. By 4, we have $[\cap \{(G, A) \in \widetilde{\operatorname{SO}}(X); \widetilde{\operatorname{spcl}}(\{y_{\alpha^{\circ}}\}) \subseteq (G, A)\}] \cap (H, A) = \widetilde{\varphi}$, where $(G, A) \in \widetilde{\operatorname{spO}}(X)$ such that $x_{\alpha} \notin (G, A)$ and $\widetilde{\operatorname{spcl}}(\{y_{\alpha^{\circ}}\}) \subseteq (G, A)$. Therefore $\widetilde{\operatorname{spcl}}(\{x_{\alpha}\}) \cap (G, A) = \widetilde{\varphi}$ and hence $y_{\alpha} \notin \widetilde{\operatorname{spcl}}(\{x_{\alpha}\})$. Consequently, we obtain that $\widetilde{\operatorname{spcl}}(\{x_{\alpha}\}) \subseteq \widetilde{\operatorname{spker}}(\{x_{\alpha}\})$.

 $4 \rightarrow 5: Let \ (G,A) \in \tilde{s}pO(X) \ and \ x_{\alpha} \in (G,A), let \ y_{\alpha^{\circ}} \in \tilde{s}pker(\{x_{\alpha}\}). \ Then \ x_{\alpha} \in \tilde{s}pcl(\{y_{\alpha^{\circ}}\}) \ and \ y_{\alpha^{\circ}} \in (G,A)$ this implies that $\tilde{s}pker(\{x_{\alpha}\}) \subseteq (G,A)$. Therefore, we obtain $\tilde{s}pcl(\{x_{\alpha}\}) \subseteq \tilde{s}pker(\{x_{\alpha}\}) \subseteq (G,A)$. This shows that (X,τ,A) is soft pre R_0 .

Theorem 3.9. For a soft topological space (X, τ, A) , the following statements are equivalent:

- 1. (X, τ, A) is a soft pre R_0 space.
- 2. $\operatorname{\tilde{s}pcl}(\{x_{\alpha}\}) = \operatorname{\tilde{s}pker}(\{x_{\alpha}\})$, for all $x_{\alpha} \in \tilde{X}$.

Proof. Suppose that (X,\emptyset,A) is a soft pre R_0 space. By Theorem 3.8 $\operatorname{\widetilde{spcl}}(\{x_\alpha\}) \subseteq \operatorname{\widetilde{spker}}(\{x_\alpha\})$, for all $x_\alpha \in \widetilde{X}$. Let $y_\alpha \in \operatorname{\widetilde{spker}}(\{x_\alpha\})$, then $x_\alpha \in \operatorname{\widetilde{spcl}}(\{y_\alpha \in Spcl}(\{x_\alpha\}))$, and by Theorem 3.4 $\operatorname{\widetilde{spcl}}(\{x_\alpha\}) = \operatorname{\widetilde{spcl}}(\{y_\alpha \in Spcl}(\{x_\alpha\}))$. Therefore $y_\alpha \in \operatorname{\widetilde{spcl}}(\{x_\alpha\})$ and hence $\operatorname{\widetilde{spker}}(\{x_\alpha\}) \subseteq \operatorname{\widetilde{spcl}}(\{x_\alpha\})$. This shows that $\operatorname{\widetilde{spcl}}(\{x_\alpha\}) = \operatorname{\widetilde{spker}}(\{x_\alpha\})$, for all $x_\alpha \in \widetilde{X}$. $2 \to 1$: Follows from Theorem 3.8.

Theorem 3.10. For a soft topological space (X, τ, A) , the following statements are equivalent:

- 1. (X, τ, A) is a soft pre R_0 space.
- 2. $x_{\alpha} \in \tilde{spcl}(\{y_{\alpha^{\circ}}\})$ if and only if $y_{\alpha^{\circ}} \in \tilde{spcl}(\{x_{\alpha}\})$ for any two distinct soft points $x_{\alpha}, y_{\alpha^{\circ}} \in \tilde{X}$.

Proof. $1 \rightarrow 2$: Assume that (X, τ, A) is a soft pre R_0 space. Let $x_\alpha \in \operatorname{\tilde{spcl}}(\{y_{\alpha^\circ}\})$ and (H, A) be any soft pre open set containing y_{α° . By 1 $\operatorname{\tilde{spcl}}(\{y_{\alpha^\circ}\}) \subseteq (H, A)$, hence $x_\alpha \in (H, A)$. Therefore, every soft pre open set containing y_{α° contains x_α , so $y_{\alpha^\circ} \in \operatorname{\tilde{spcl}}(\{x_\alpha\})$.

 $2\rightarrow 1$: Let (G,A) be any soft pre open set containing x_{α} , if $y_{\alpha^{\circ}}\notin (G,A)$, then $x_{\alpha}\notin \operatorname{\tilde{s}pcl}(\{y_{\alpha^{\circ}}\})$ and By 2, we have $y_{\alpha^{\circ}}\notin \operatorname{\tilde{s}pcl}(\{x_{\alpha}\})$. This implies that $\operatorname{\tilde{s}pcl}(\{x_{\alpha}\})\subseteq (G,A)$, hence (X,τ,A) is a soft pre R_0 space. \square

Theorem 3.11. A soft topological space (X, τ, A) is a soft pre R_0 if and only if $\operatorname{\tilde{s}pker}(\{x_\alpha\}) \neq \operatorname{\tilde{s}pker}(\{y_{\alpha^\circ}\})$, for all $x_\alpha \neq y_{\alpha^\circ}$

Proof. Follows from Theorem 3.9 and Theorem 3.10.

Lemma 3.12. Let (X, τ, A) be a soft topological space and $(F, A) \subseteq \widetilde{X}$. Then $\operatorname{\tilde{s}pker}(F, A) = \left\{x_{\alpha} \in \widetilde{X} | \operatorname{\tilde{s}pcl}(\{x_{\alpha}\}) \cap (F, A) \neq \widetilde{\emptyset}\right\}$.

Proof. Let $x_{\alpha} \in \widetilde{\operatorname{spker}}(F, A)$ and suppose $\widetilde{\operatorname{spcl}}(\{x_{\alpha}\}) \cap (F, A) = \widetilde{\emptyset}$.

Hence $x_{\alpha} \notin \widetilde{X} \setminus \widetilde{\operatorname{spcl}}(\{x_{\alpha}\})$ which is a soft pre open set containing (F,A) and this is impossible, since $x_{\alpha} \in \widetilde{\operatorname{spker}}(F,A)$, hence $\widetilde{\operatorname{spcl}}(\{x_{\alpha}\}) \cap (F,A) \neq \widetilde{\emptyset}$. A gain let $x_{\alpha} \in \widetilde{X}$ such that $\widetilde{\operatorname{spcl}}(\{x_{\alpha}\}) \cap (F,A) \neq \widetilde{\emptyset}$ and suppose that $x_{\alpha} \notin \widetilde{\operatorname{spker}}(F,A)$. Then there exists a soft pre open (G,A), such that $x_{\alpha} \notin (G,A)$ and $(F,A) \subseteq (G,A)$. Let $y_{\alpha} \in \widetilde{\operatorname{spcl}}(\{x_{\alpha}\}) \cap (F,A)$. Hence (G,A) is a soft pre neigbourhood of y_{α} which does not contain x_{α} . This contradict that $x_{\alpha} \in \widetilde{\operatorname{spker}}(F,A)$ so the claim.

Theorem 3.13. For a soft topological space (X, τ, A) , the following statements are equivalent:

- 1. (X, τ, A) is a soft pre R_0 space.
- 2. If (K, A) is soft pre closed, then $(K, A) = \tilde{s}pker(K, A)$.
- 3. If (K, A) is soft pre closed, and $x_{\alpha} \in (K, A)$, then $\operatorname{\tilde{s}pker}(\{x_{\alpha}\}) \subseteq (K, A)$.
- 4. If $x_{\alpha} \in \tilde{X}$, then $\tilde{s}pker(\{x_{\alpha}\}) \subseteq \tilde{s}pcl(\{x_{\alpha}\})$.

Proof. $1\rightarrow 2$: Let (K,A) be a soft pre closed set and $x_{\alpha}\notin (K,A)$. Thus $\widetilde{X}\setminus (K,A)$ is soft pre open set containing x_{α} . Since \widetilde{X} is an soft pre R_0 space, so $\operatorname{\tilde{spcl}}(\{x_{\alpha}\})\subseteq \widetilde{X}\setminus (K,A)$, thus $\operatorname{\tilde{spcl}}(\{x_{\alpha}\})\cap (K,A)=\widetilde{\varphi}$, by Lemma 3.12 $x_{\alpha}\notin\operatorname{\tilde{spker}}(K,A)$. Therefore $\operatorname{\tilde{spker}}(\{x_{\alpha}\})\subseteq (K,A)$, hence $(K,A)=\operatorname{\tilde{spker}}(K,A)$. $2\rightarrow 3$: In general $(F,A)\subseteq (G,A)$ implies that $\operatorname{\tilde{spker}}(F,A)\subseteq\operatorname{\tilde{spker}}(G,A)$. Therefore, it follows from 2 that $\operatorname{\tilde{spker}}(\{x_{\alpha}\})\subseteq\operatorname{\tilde{spker}}(K,A)=(K,A)$.

 $3 \rightarrow 4 : \text{Since } x_{\alpha} \in \tilde{\text{spcl}}(\{x_{\alpha}\}) \text{ and } \tilde{\text{spcl}}(\{x_{\alpha}\}) \text{ is soft closed, so by 3, we get that } \tilde{\text{spker}}(\{x_{\alpha}\}) \subseteq \tilde{\text{spcl}}(\{x_{\alpha}\}) \ .$ $4 \rightarrow 1 : \text{Let } x_{\alpha} \in \tilde{\text{spcl}}(\{y_{\alpha^{\circ}}\}), \text{ then by Lemma } 3.3 \ y_{\alpha^{\circ}} \in \tilde{\text{spker}}(\{x_{\alpha}\}). \text{ Since } x_{\alpha} \in \tilde{\text{spcl}}(\{x_{\alpha}\}) \text{ and } \tilde{\text{spcl}}(\{x_{\alpha}\}) \text{ is soft pre closed. So by 4 we obtain } y_{\alpha^{\circ}} \in \tilde{\text{spker}}(\{x_{\alpha}\}) \subseteq \tilde{\text{spcl}}(\{x_{\alpha}\}). \text{ Therefore } x_{\alpha} \in \tilde{\text{spcl}}(\{y_{\alpha^{\circ}}\}) \text{ implies that } y_{\alpha^{\circ}} \in \tilde{\text{spcl}}(\{x_{\alpha}\}), \text{ on the same way, if } y_{\alpha^{\circ}} \in \tilde{\text{spcl}}(\{x_{\alpha}\}), \text{ we get } x_{\alpha} \in \tilde{\text{spcl}}(\{y_{\alpha^{\circ}}\}), \text{ so by Theorem } 3.10 \ (X,\tau,A) \text{ is a soft pre } R_0 \text{ space.}$

Definition 3.14. A soft filter base \mathcal{F} is called soft p-convergent to a point x_{α} in \tilde{X} , if for any soft pre open set (H, A) of \tilde{X} containing x_{α} there exists (G, A) in \mathcal{F} such that $(G, A) \sqsubseteq (H, A)$.

Lemma 3.15. Let (X, τ, A) be a soft topological space and let x_{α} and $y_{\alpha^{\circ}}$ be any two points in \tilde{X} such that every net in \tilde{X} sp-converging to $y_{\alpha^{\circ}}$ sp -converges to x_{α} . Then $x_{\alpha} \in \operatorname{spcl}(\{y_{\alpha^{\circ}}\})$.

Proof. Suppose that $x_{\alpha i} = y_{\alpha^{\circ}}$ for each $i \in N$. Then $\{x_{\alpha i}\}_{i \in N}$ is a net in $\operatorname{\tilde{spcl}}(\{y_{\alpha^{\circ}}\})$. By the fact that $\{x_{\alpha i}\}_{i \in N}$ $\operatorname{\tilde{sp-converges}}$ to $y_{\alpha^{\circ}}$, then $\{x_{\alpha i}\}_{i \in N}$ $\operatorname{\tilde{sp-converges}}$ to x_{α} and this means that $x_{\alpha} \in \operatorname{\tilde{spcl}}(\{y_{\alpha^{\circ}}\})$. \square

Theorem 3.16. For a topological space (X, τ, A) , the following statements are equivalent :

1 (X, τ , A) is a soft pre R₀

 $2 \text{If } x_{\alpha}, y_{\alpha^{\circ}} \in \tilde{X} \text{, then } y_{\alpha^{\circ}} \in \tilde{\text{spcl}}(\{x_{\alpha}\}) \text{ if and only if every net in } \tilde{X} \text{ $\tilde{\text{sp}}$ -converging to } y_{\alpha^{\circ}} \tilde{\text{sp}} \text{ -converges to } x_{\alpha}.$

Proof. 1 → 2 : Let $x_{\alpha}, y_{\alpha^{\circ}} \in \tilde{X}$ such that $y_{\alpha^{\circ}} \in \tilde{spcl}(\{x_{\alpha}\})$. Let $\{x_{\alpha i}\}_{i \in \land}$ be a net in \tilde{X} such that $\{x_{\alpha i}\}_{i \in \land}$ \tilde{sp} -converges to $y_{\alpha^{\circ}}$. Since $y_{\alpha^{\circ}} \in \tilde{spcl}(\{x_{\alpha}\})$, by Theorem 3.5 we have $\tilde{spcl}(\{x_{\alpha}\}) = \tilde{spcl}(\{y_{\alpha}\})$. Therefore $x_{\alpha} \in \tilde{spcl}(\{y_{\alpha}\})$. This means that $\{x_{\alpha i}\}_{i \in \land}$ \tilde{sp} -converges to x_{α} . Conversely, let $x_{\alpha}, y_{\alpha^{\circ}} \in \tilde{X}$ such that every net in \tilde{X} \tilde{sp} -converging to $y_{\alpha^{\circ}} \tilde{sp}$ -converges to x_{α} . Then $x_{\alpha} \in \tilde{spcl}(\{y_{\alpha^{\circ}}\})$ by Lemma 3.12. By Theorem 3.6, we have $\tilde{spcl}(\{x_{\alpha}\}) = \tilde{spcl}(\{y_{\alpha^{\circ}}\})$. Therefore $y_{\alpha^{\circ}} \in \tilde{spcl}(\{x_{\alpha}\}) = \tilde{spcl}(\{y_{\alpha^{\circ}}\})$. Therefore $y_{\alpha^{\circ}} \in \tilde{spcl}(\{y_{\alpha}\}) = \tilde{spcl}(\{y_{\alpha}\})$. So there exists a net $\{x_{\alpha i}\}_{i \in \land}$ in $\tilde{spcl}(\{x_{\alpha}\})$ such that $\{x_{\alpha i}\}_{i \in \land}$ $\tilde{spcl}(\{x_{\alpha}\}) = \tilde{spcl}(\{y_{\alpha}\})$. It follows that $y_{\alpha^{\circ}} \in \tilde{spcl}(\{x_{\alpha}\})$. By the similarly we obtain $x_{\alpha} \in \tilde{spcl}(\{y_{\alpha^{\circ}}\})$. Therefore $\tilde{spcl}(\{x_{\alpha}\}) = \tilde{spcl}(\{y_{\alpha^{\circ}}\})$ and by Theorem 3.6 $\{x_{\alpha}\}_{\alpha}$ is a soft pre $\{x_{\alpha}\}_{\alpha}$.

Definition 3.17. A soft topological space (X, τ, A) is called soft pre R_1 if for $x_{\alpha}, y_{\alpha^{\circ}} \in \tilde{X}$ with $\operatorname{spcl}(\{x_{\alpha}\}) \neq \operatorname{spcl}(\{y_{\alpha^{\circ}}\})$ there exist disjoint soft pre open sets (F, A) and (G, A) such that $\operatorname{spcl}(\{x_{\alpha}\}) \subseteq (F, A)$ and $\operatorname{spcl}(\{y_{\alpha^{\circ}}\}) \subseteq (G, A)$.

Theorem 3.18. *If* (X, τ, A) *is soft pre* R_1 , *then it is a soft pre* R_0 *space.*

Proof. Suppose that (X, τ, A) is soft pre R_1 . Let (H, A) be any soft pre open set containing a soft point x_{α} . Then for each $y_{\alpha^{\circ}} \in \tilde{X} \setminus (H, A)$, $\tilde{spcl}(\{x_{\alpha}\}) \neq \tilde{spcl}(\{y_{\alpha^{\circ}}\})$. Since (X, τ, A) is soft pre R_1 , there exist (K, A) and (G, A) such that $\tilde{spcl}(\{x_{\alpha}\}) \subseteq (K, A)$ and $\tilde{spcl}(\{y_{\alpha^{\circ}}\}) \subseteq (G, A)$. Let $(F, A) = \cup \{(G, A) : y_{\alpha^{\circ}} \in \tilde{X} \setminus (H, A)\}$, then $\tilde{X} \setminus (H, A) \subseteq (F, A)$, $x_{\alpha} \notin (F, A)$ and (F, A) is a soft pre open set. Therefore, $\tilde{spcl}(\{x_{\alpha}\}) \subseteq \tilde{X} \setminus (F, A) \subseteq (H, A)$. Hence (X, τ, A) is soft pre R_0 .

Proposition 3.19. Every soft pre T_1 space is soft pre R_0 .

Proof. Obvious . \Box

Proposition 3.20. A soft topological space (X, τ, A) is soft pre T_1 if and only if \tilde{X} is both soft pre T_0 and soft pre R_0 .

Proof. Necessity, Let \tilde{X} be soft pre T_1 , then by Proposition 3.19, \tilde{X} is soft pre R_0 and since every soft pre T_1 is soft pre T_0 that completes the proof.

Sufficiency, assume that \tilde{X} is both soft pre T_0 and soft pre R_0 . Let x_α , $y_{\alpha^\circ} \in \tilde{X}$ be any pair of distinct soft points, since \tilde{X} is soft pre T_0 , there exists a soft pre open set (H,A) such that $x_\alpha \in (H,A)$ and $y_{\alpha^\circ} \notin (H,A)$ or there exists a soft pre open set (G,A) such that $y_{\alpha^\circ} \in (G,A)$ and $x_\alpha \notin (G,A)$. Suppose that $x_\alpha \in (H,A)$ and $y_{\alpha^\circ} \notin (H,A)$. Since \tilde{X} is soft pre R_0 , then $\operatorname{spcl}(\{x_\alpha\}) \subseteq (H,A)$. As $y_{\alpha^\circ} \notin (H,A)$ implies $y_{\alpha^\circ} \notin \operatorname{spcl}(\{x_\alpha\})$. Hence $y_{\alpha^\circ} \in (G,A) = \tilde{X} \setminus \operatorname{spcl}(\{x_\alpha\})$ and it is clear that $x_\alpha \notin (G,A)$, this implies that there exist soft pre open set (G,A) and (H,A) containing x_α and y_{α° respectively such that $x_\alpha \notin (G,A)$ and $y_{\alpha^\circ} \notin (H,A)$. Therefore (X,τ,A) is a soft pre T_1 space.

Theorem 3.21. A space \tilde{X} is soft pre R_0 if and only if for every soft pre closed set (K, A) and $x_{\alpha} \notin (K, A)$, there exists a soft pre open set (G, A) such that $x_{\alpha} \notin (G, A)$ and $(K, A) \subseteq (G, A)$.

Proof. Let \tilde{X} be soft pre R_0 space and (K,A) be soft pre closed subset of \tilde{X} not containing $x_{\alpha} \in X$. Then $X \setminus (K,A)$ is soft pre open set containing x_{α} , since \tilde{X} is soft pre R_0 space implies that $\tilde{spcl}(\{x_{\alpha}\}) \subseteq X \setminus (K,A)$ and then $(K,A) \subseteq X \setminus \tilde{spcl}(\{x_{\alpha}\})$. Now let $(G,A) = X \setminus \tilde{spcl}(\{x_{\alpha}\})$, then (G,A) is soft pre open set not contains x_{α} and $(K,A) \subseteq (G,A)$.

Conversely: Let $x_{\alpha} \in (G, A)$ where (G, A) is soft pre open set in \tilde{X} . Then $X \setminus (G, A)$ is soft pre closed set and $x_{\alpha} \notin X \setminus (G, A)$, by hypothesis there exists a soft pre open set (H, A) such that $x_{\alpha} \notin (H, A)$ and $X \setminus (G, A) \subseteq (H, A)$. Now $X \setminus (H, A) \subseteq (G, A)$ and $x_{\alpha} \in X \setminus (H, A)$, but $X \setminus (H, A)$ is soft pre closed set then $\operatorname{Spcl}(\{x_{\alpha}\}) \subseteq X \setminus (H, A) \subseteq (G, A)$ this implies that \tilde{X} is a soft pre R_0 space.

Theorem 3.22. A space \tilde{X} is soft pre T_2 if and only if it is soft pre R_1 and soft pre T_0 .

Proof. Let \tilde{X} be soft pre T_2 . Then from Definition 2.17 \tilde{X} is soft pre T_0 and to show \tilde{X} is soft pre R_1 space, let x_{α} , $y_{\alpha^{\circ}} \in \tilde{X}$ such that $\operatorname{\tilde{spcl}}(\{y_{\alpha}\}) \neq \operatorname{\tilde{spcl}}(\{y_{\alpha^{\circ}}\})$ and since \tilde{X} is soft pre T_1 space so by Theorem 2.19, every singleton set in \tilde{X} is soft pre closed, this means $\operatorname{\tilde{spcl}}(\{x_{\alpha}\}) = \{x_{\alpha}\}$ and $\operatorname{\tilde{spcl}}(\{y_{\alpha^{\circ}}\}) = \{y_{\alpha^{\circ}}\}$ implies that $\{x_{\alpha}\} \neq \{y_{\alpha^{\circ}}\}$ and since \tilde{X} is soft pre T_2 space so there exist two disjoint soft pre open sets (G,A) and (H,A) such that $x_{\alpha} \in (G,A)$ and $y_{\alpha^{\circ}} \in (H,A)$ implies that $\operatorname{\tilde{spcl}}(\{x_{\alpha}\}) \subseteq (G,A)$ and $\operatorname{\tilde{spcl}}(\{y_{\alpha^{\circ}}\}) \subseteq (H,A)$. Thus \tilde{X} is a soft pre R_1 space.

Conversely, let \tilde{X} be soft pre R_1 and soft pre T_0 space and $x_{\alpha}, y_{\alpha^{\circ}} \in \tilde{X}$ such that $x_{\alpha} \neq y_{\alpha^{\circ}}$. Now since \tilde{X} is soft pre T_0 so by Definition 2.17 there exist a soft pre open set (G, A) such that $x_{\alpha} \in (G, A)$ and $y_{\alpha^{\circ}} \notin (G, A)$ or $y_{\alpha} \in (G, A)$ and $x_{\alpha} \notin (G, A)$, take $x_{\alpha} \in (G, A)$ and $y_{\alpha^{\circ}} \notin (G, A)$ implies that $(G, A) \cap \{y_{\alpha^{\circ}}\} = \emptyset$, and then $x_{\alpha} \notin Spcl(\{y_{\alpha^{\circ}}\})$ this implies that $Spcl(\{y_{\alpha^{\circ}}\}) \neq Spcl(\{y_{\alpha^{\circ}}\})$ and since \tilde{X} is soft pre R_1 so there exist two disjoint soft pre open sets (G, A) and (H, A) such that $Spcl(\{x_{\alpha}\}) \subseteq (G, A)$ and $Spcl(\{y_{\alpha^{\circ}}\}) \subseteq (H, A)$ implies that $x_{\alpha} \in (G, A)$ and $y_{\alpha^{\circ}} \in (H, A)$. Thus \tilde{X} is soft pre T_2 .

4. Functions with soft pre closed graph and soft pre-cluster set

In this section we discuss properties of functions defined on soft topological spaces that have soft pre closed graphs. Moreover we investigate properties of soft pre cluster sets and its relation with functions.

Definition 4.1. The graph of a function $f_{pu}:(X,\tau.A)\to (Y,\mu,A)$ is $G(f_{pu})$ and it is soft pre closed in $\tilde{X}\times\tilde{Y}$, if for each $(x_{\alpha},y_{\alpha^{\circ}})\in (\tilde{X}\times\tilde{Y})\backslash G(f_{pu})$, there exist two soft pre open sets (U,A) containing x_{α} and (V,A) containing $y_{\alpha^{\circ}}$ such that $(U,A)\times (V,A)\cap G(f_{pu})=\widetilde{\varphi}$.

Lemma 4.2. The function $f_{pu}:(X,\tau.A)\to (Y,\mu,A)$ has a soft pre closed graph if and only if for each $x_\alpha\in \tilde{X}$ and $y_{\alpha^\circ}\in \tilde{Y}$ such that $f_{pu}(x_\alpha)\neq y_{\alpha^\circ}$, there exist two soft pre open sets (U,A) and (V,A) containing x_α and y_{α° respectively, such that $f_{pu}((U,A)\cap (V,A))=\widetilde{\varphi}$

Proof. Follows from Definition 4.1.

Proposition 4.3. If $f_{pu}:(X,\tau.A)\to (Y,\mu,A)$ is an injective function with, soft pre closed graph, then \tilde{X} is a soft pre T_0 space.

Proof. Let $x_{\alpha 1}$ and $x_{\alpha 2}$ be two distinct points in \tilde{X} . Since f_{pu} is injective, so $f_{pu}(x_{\alpha 1}) \neq f_{pu}(x_{\alpha 2})$. Let $f_{pu}(x_{\alpha 1}) = y_{\alpha 1}$ thus $f_{pu}(x_{\alpha 2}) \neq y_{\alpha 1}$, by Lemma 4.2, there exists two soft pre open sets (U,A) and (V,A) containing $x_{\alpha 2}$ and $y_{\alpha 1}$ respectively, such that $f_{pu}((U,A)\cap (V,A))=\widetilde{\varphi}$, then $(U,A)\cap f_{pu}^{-1}(V,A)=\widetilde{\varphi}$. We get $f_{pu}(x_{\alpha 1})=y_{\alpha 1}\in (V,A)$, then $x_{\alpha 1}\in f_{pu}^{-1}(V,A)$ implies that, $x_{\alpha 1}\notin (U,A)$. Again consider $f_{pu}(x_{\alpha 2})=y_{\alpha 2}$ implies that $f_{pu}(x_{\alpha 1})\neq y_{\alpha 2}$. Since the graph of f_{pu} is soft pre closed, so there exist soft pre open sets (U_1,A) containing $x_{\alpha 1}$ and (U_1,A) containing $y_{\alpha 2}$ such that $f_{pu}((U_1,A)\cap (V_1,A))=\widetilde{\varphi}$, so $(U_1,A)\cap f_{pu}^{-1}(V_1,A)=\widetilde{\varphi}$, we obtain $f_{pu}(x_{\alpha 2})=y_{\alpha 2}\in (V_1,A)$, hence $x_{\alpha 2}\in f_{pu}^{-1}(V_1,A)$ and hence $x_{\alpha 2}\notin (U_1,A)$. Therefore \widetilde{X} is a soft pre T_1 space.

Proposition 4.4. If $f_{pu}:(X,\tau.A)\to (Y,\mu,A)$ is a surjective function with soft pre closed graph, then \tilde{Y} is a soft pre T_1 space.

Proof. Let $y_{\alpha 1}$ and $y_{\alpha 2}$ be two distinct points of \tilde{Y} . Since f_{pu} is surjective so there exists a soft point $x_{\alpha 1} \in \tilde{X}$, with $f_{pu}(x_{\alpha 1}) = y_{\alpha 1}$ then $f_{pu}(x_{\alpha 1}) \neq y_{\alpha 2}$. Therefore, $(x_{\alpha 1}, y_{\alpha 2}) \in G(f_{pu})$, since the graph of f_{pu} is soft pre closed, by Lemma 4.2, there exist two soft pre open sets (U_1, A) in \tilde{X} containing $x_{\alpha 1}$ and (V_2, A) in \tilde{Y} containing $y_{\alpha 2}$ such that $f_{pu}((U_1, A) \cap (V_2, A)) = \tilde{\phi}$. We obtain $y_{\alpha 2} \in (V_2, A)$, and $x_{\alpha 1} \in (U_1, A)$ implies that $f_{pu}(x_{\alpha 1}) \in f_{pu}(U_1, A)$, so $y_{\alpha 1} \notin (V_2, A)$. Again from the surjectivity of f_{pu} there exists $x_{\alpha 2} \in \tilde{X}$ with $f_{pu}(x_{\alpha 2}) = y_{\alpha 2}$, then $f_{pu}(x_{\alpha 2}) \neq y_{\alpha 1}$, thus $(x_{\alpha 2}, y_{\alpha 1}) \notin G(f_{pu})$, and the graph of f_{pu} is soft pre closed, there exist two soft pre open sets (U_2, A) and (V_1, A) containing $x_{\alpha 2}$ and $y_{\alpha 1}$ respectively, such that $f_{pu}((U_2, A) \cap (V_1, A)) = \tilde{\phi}$. We get $x_{\alpha 2} \in (U_2, A)$ implies that $y_{\alpha 2} = f_{pu}(x_{\alpha 2}) \in f_{pu}(U_2, A)$, so $Y_{\alpha 2} \notin (V_1, A)$. It follows that \tilde{Y} is a soft pre T_1 -space. □

Lemma 4.5. If $f_{pu}:(X,\tau.A)\to (Y,\mu,A)$ is a bijective function with soft pre closed graph, then both \tilde{X} and \tilde{Y} are soft pre T_1 spaces.

Proof. Follows from Proposition 4.3 and Proposition 4.4

Proposition 4.6. If $f_{pu}:(X,\tau.A)\to (Y,\mu,A)$ is soft pre irresolute mapping and Y is a soft pre T_2 - space, then $G\left(f_{pu}\right)$ is soft pre closed.

Proof. Suppose that $(x_{\alpha}, y_{\alpha^{\circ}}) \notin G(f_{pu})$. Then $f_{pu}(x_{\alpha}) \neq y_{\alpha^{\circ}}$, and since \tilde{Y} is a soft pre T_2 - space, there exist soft pre open sets (U, A) and (V, A) such that $f_{pu}(x_{\alpha}) \in (U, A)$, $y_{\alpha^{\circ}} \in (V, A)$ and $((U, A) \cap (V, A)) = \widetilde{\phi}$. Since f_{pu} is soft pre irresolute mapping, so there exists a soft pre open set (G, A) containing x_{α} such that $f_{pu}(G, A) \subseteq (U, A)$, hence we have $f_{pu}(G, A) \cap (V, A) = \widetilde{\phi}$. Therefore, by Lemma 4.2, $G(f_{pu})$ is soft pre closed.

Definition 4.7. Let $f_{pu}:(X,\tau.A)\to (Y,\mu,A)$ be any soft function, the soft pre cluster set of f_{pu} at x_α is denoted by $\tilde{spC}(f_{pu},x_\alpha)$ is the set of all points $y_{\alpha^\circ}\in \tilde{Y}$ such that whenever there exists a Filter base \mathfrak{F} soft-pre converges to a point x_α , the filter base $f_{pu}(\mathfrak{F})$ soft pre converges to the point y_{α° .

One of the characterizations of soft pre cluster set of a function f_{pu} is clarified in the following result:

Theorem 4.8. Let $f_{pu}: (X, \tau.A) \rightarrow (Y, \mu, A)$ be any function and $x_{\alpha} \in \hat{X}$ so the following statements are equivalent:

- 1. $y_{\alpha}^{\circ} \in \hat{s}pC(f_{pu}, x_{\alpha})$
- $2. \ y_{\alpha} \in \in \prod \{ \hat{s}pclf_{pu}((U,A)) : \textit{for all } (U,A) \in \hat{s}pN \ (x_{\alpha}) \}.$
- 3. $f_{pu}(\hat{s}pN(x_{\alpha}))$ is soft pre accumulates to y_{α} .
- 4. $f_{pu}^{-1}(\hat{s}pN(y_{\alpha}^{\circ}))$ is soft pre accumulates to x_{α} .
- 5. $x_{\alpha} \in \prod \{ \hat{spclf}_{pu}^{-1}((V,A)) : \text{for all } (V,A) \in \hat{spN}(y_{\alpha^{\circ}}) \}.$

Proof. 1—3: Let $y_{\alpha} \in \hat{sp}C$ (f_{pu}, x_{α}) so there exists a net x_{α} soft pre converges to a point x_{α} and f_{pu} (x_{α}) soft pre converges to a point y_{α} . Suppose that (U, A) is any soft pre open set containing x_{α} , since $x_{\alpha i}$ soft pre converges to x_{α} , there exist $i_0 \in D$ such that $x_{\alpha i} \in (U, A)$ for each $i \geqslant i_0$ and f_{pu} (x_{α}) soft pre converges to y_{α} . Therefore, $y_{\alpha} \in \hat{spclf}_{pu}(x_{\alpha})$ implies that $y_{\alpha} \in \hat{spclf}_{pu}(U, A)$ for each soft pre open set (U, A) containing x_{α} . Hence $y_{\alpha} \in \Pi\{\hat{spclf}_{pu}(U, A)\}$: for all $(U, A) \in \hat{spn}(x_{\alpha})$.

 $2 \rightarrow 3: \text{ Let } y_{\alpha} \in \Pi\{\hat{\text{spclf}}_{pu}((U,A)): \text{forall}(U,A) \in \hat{\text{spN}}(x_{\alpha})\}, \text{ so } y_{\alpha^{\circ}} \in \hat{\text{spclf}}_{pu}((U,A)) \text{ for each soft pre open set } (U,A) \text{ containing } x_{\alpha}. \text{ Then } f_{pu}((U,A)) \cap (V,A) \neq \widehat{\varphi} \text{ for each soft pre open sets } (U,A) \text{ containing } x_{\alpha} \text{ and } (V,A) \text{ containing } y_{\alpha^{\circ}} \text{ implies that } f_{pu}\left(N_{s_{p}}(x_{\alpha})\right) \cap (V,A) \neq \widehat{\varphi} \text{ for every soft pre open set } (V,A) \text{ containing } y_{\alpha} \cap (V,A) \text{ soft pre accumulates to } y_{\alpha}.$

 $3 \rightarrow 4: \text{Let } f_{\mathfrak{pu}}\left(\widehat{\mathfrak{sp}}N\left(x_{\alpha}\right)\right) \text{ is soft pre accumulates to } y_{\alpha^{\circ}}, \text{ which implies that } f_{\mathfrak{pu}}\left(\widehat{\mathfrak{sp}}N\left(x_{\alpha}\right)\right)\Pi(V,A) \neq \widehat{\varphi} \text{ for each } (V,A) \in \widehat{\mathfrak{sp}}N\left(y_{\alpha^{\circ}}\right), \text{ thus } (U,A)\Pi f_{\mathfrak{pu}}^{-1}\left(\widehat{\mathfrak{sp}}N\left(y_{\alpha^{2}}\right)\right) \neq \widehat{\varphi} \text{ for every soft pre open set } (U,A) \text{ in } \hat{X} \text{ containing } x_{\alpha} \text{ it follows that } f_{\mathfrak{pu}}^{-1}\left(\widehat{\mathfrak{sp}}N\left(y_{\alpha^{\circ}}\right)\right) \text{ is soft pre accumulates to } x_{\alpha}.$

 $4 \rightarrow 5: \text{ Assume that } f_{pu}^{-1}\left(\$pN\left(y_{\alpha^{\circ}}\right)\right) \text{ is soft pre accumulates to } x_{\alpha}, \text{ so } (U,A)\Pi f_{pu}^{-1}\left(\$pN\left(y_{\alpha^{\circ}}\right)\right) \neq \widehat{\varphi}, \text{ for every soft pre open set } (U,A) \text{ containing } x_{\alpha}. \text{ It follows that } (U,A)\Pi f_{pu}^{-1}((V,A)) \neq \widehat{\varphi} \text{ for every soft pre open set } (U,A) \text{ in } \hat{X} \text{ containing } x_{\alpha} \text{ and } (V,A) \text{ in } \hat{Y} \text{ containing } y_{\alpha} \stackrel{\circ}{} \text{ and hence } x_{\alpha} \in \$pclf_{pu}((V,A)) \text{ for every soft pre open set } (V,A) \text{ containing } y_{\alpha}. \text{ This shows that } x_{\alpha} \in \Pi\left\{\$pclf_{pu}^{-1}((V,A)) : \text{ for all } (V,A) \in \$pN\left(y_{\alpha^{2}}\right)\right\}.$

 $5 \rightarrow 1$: Since $\hat{S}O(X,x_{\alpha})$ is a filter base which is soft pre-converges to a point x_{α} , then $\hat{S}O(X,x_{\alpha})$ is contained in a nutria filter F on \hat{X} which is also soft pre-converges to x_{α} , so there exist $(F,A) \in \mathcal{F}$ such that $(F,A) \subseteq (U,A)$ for every soft pre open set (U,A) in \hat{X} containing x_{α} , so $(U,A) \in \mathcal{F}$. By $5 x_{\alpha} \in \hat{spclf}_{pu}^{-1}((V,A))$ for every soft pre open set (V,A) containing y_{α} . So $(U,A) \cap f_{pu}^{-1}((V,A)) \neq \hat{\varphi}$, implies that $f_{pu}((U,A)) \cap (V,A) \neq \hat{\varphi}$ for every soft pre open set (U,A) containing x_{α} and (V,A) containing y_{α} . Hence y_{α} is soft pre adheres point of ultra filter base $f_{pu}(F)$ and by Corollary 4.5, $f_{pu}(F)$ is soft pre converges to a point y_{α} .

By using the concept of soft pre cluster set of a function f_{pu} : $(X, \tau.A) \rightarrow (Y, \mu, A)$ we obtain some properties and characterizations of the soft pre graph f_{pu} . We start by the following result which is a relation between a function with soft pre closed graph and soft pre cluster set of the function.

Definition 4.9. Let $(X, \tau.A)$ be a soft topological space, the degenerate soft pre cluster set of f_{pu} is a soft pre cluster set which contain exactly one element.

Theorem 4.10. Let f_{pu} : $(X, \tau.A) \rightarrow (Y, \mu, A)$ be any function, the graph of f_{pu} is soft pre closed if and only if soft pre cluster set of f_{pu} at x_{α} is degenerate.

Proof. Let y_{α} be any point in \hat{Y} different from $f_{pu}(x_{\alpha})$ by Lemma 4.2, there exist $(U,A) \in \hat{s}pO(X,x)$ and $(V,A) \in \hat{s}pO(Y,y)$, such that $f_{pu}((U,A))\Pi(V,A) = \widehat{\varphi}$ implies that $y_{\alpha} \notin \hat{s}pclf_{pu}((U,A))$ and by Theorem 4.9, $y_{\alpha} \notin \hat{s}pC(f_{pu},x_{\alpha})$. Hence $\hat{s}pC(f_{pu},x_{\alpha}) = \{f_{pu}(x_{\alpha})\}$.

Conversely, suppose $G(f_{pu})$ is not soft pre closed. This implies that there exists $(x_{\alpha}, y_{\alpha^{\circ}}) \notin G(f_{pu})$

such that $f_{pu}((U,A)) \sqcap (V,A) \neq \widehat{\varphi}$ for every soft pre open set (U,A) in \widehat{X} containing x_{α} and (V,A) in \widehat{Y} containing y_{α} , then $y_{\alpha} \in \widehat{spcl} f_{pu}((U,A))$ for each soft pre open set (U,A) containing x_{α} by Theorem 4.8, $y_{\alpha} \in \widehat{spc} (f_{pu}, x_{\alpha})$ which contradicts the fact that $\widehat{spc} (f_{pu}, x_{\alpha}) = \{f_{pu}(x_{\alpha})\}$. Therefore $G(f_{pu})$ is soft pre closed

From above theorem we obtain the following results:

Corollary 4.11. Let f_{pu} : $(X, \tau.A) \rightarrow (Y, \mu, A)$ be any function, the graph of f_{pu} is soft pre closed if and only if there exists a net x_{α} soft pre converges to a point x_{α} the net $f_{pu}(x_{\alpha})$ soft pre converges to a point y_{α} and $y_{\alpha} = f_{pu}(x_{\alpha})$.

Corollary 4.12. Let f_{pu} : $(X, \tau.A) \rightarrow (Y, \mu, A)$ be any function, the graph of f_{pu} is soft pre closed if and only if there exists a filter F soft pre convergls to a point χ_{α} , the net $f_{pu}(\mathcal{F})$ soft pre converges to a point χ_{α} and $\chi_{\alpha} = f_{pu}(\chi_{\alpha})$.

Corollary 4.13. The graph of a function f_{pu} : $(X, \tau.A) \rightarrow (Y, \mu, A)$ is soft pre closed if and only if $f_{pu}(x_{\alpha}) \in \cap \hat{spclf}_{pu}((U, A))$ for each soft pre open set (U, A) containing x_{α} .

5. Conclution

In the last two decades the soft set theory, new definitions, examples, new classes of soft sets, and properties for mappings between different classes of soft sets are introduced and studied. After that, the theory of soft topological spaces is investigated. This paper continues the study of the theory of soft topological spaces. In section 3, we present the notion of soft pre R_i spaces for i=0,1, we get several characterizations and properties of these two spaces. In section 4, we obtain nice results concerning functions with soft closed graphs and its relations with the notion of soft convergence and cluster set of a function.

References

- [1] D. Molodtsov, Soft set theory-first results, Computers and Mathematics with Applications, 37 (1999), 19-31. https://doi.org/10.1016/s0898-1221(99)00056-5
- [2] M. Shabir and M. Naz, On soft topological spaces, Computers and Mathematics with Applications, **61** (2011), 1786-1799. 1
- [3] S. Bayramov and and C. G. Aras, *A new approach to separability and compactness in soft topological spaces*, Journal of Pure and Applied Mathematics, **9** (2018), 82-93. 1, 2.8
- [4] P. Wang and J. He, Characterization of soft compact spaces based on soft filter, Journal of Theoretical and Applied Information Technology, **79** (2015), 431-436. 1, 2, 2.10, 2.11, 2.19
- [5] M. Akdag, and A. Ozkan, *On Soft Preopen Sets and Soft Pre Separation Axioms*, Gazi University Journal of Science, **27** (2014), 1077-1083. 1, 2.15
- [6] S. Hussain and B Ahmad, *Some properties of soft topological spaces*, Computers and Mathematics with Applications, **62** (2011), 4058-4067. 1, 2, 2.17
- [7] S. Hussain and B. Ahmad, *Soft separation axioms in soft topological spaces*, Hacettepe Journal of Mathematics and Statistics, **44** (2015), 559-568. 2, 2.9
- [8] M. E. Al-Shafei, M. Abo-Elhamayel and T. M. Al-Shami, *Partial soft separation axioms and soft compact spaces*, Filomat, **32** (2018), 4755-4771. https://doi.org/10.2298/fil1813755e
- [9] I. Zorlutuna, M. Akdag, W. K. Min and S. Atmaca , *Remarks on soft topological spaces*, Annals of Fuzzy Mathematics and Informatics, 3 (2012), 171-185. 2
- [10] A. Kharal and B. Ahmad, *Mappings on soft classes*, New Mathematics and Natural Computation, 7 (2011), 471-481. 2, 2.20
- [11] R. Sahin and A. Kucuk, *Soft filters and their convergence properties*, Annals of Fuzzy Mathematics and Informatics, **6** (2013), 529-543.
- [12] S. Yuksel, N. Tozlu and Z. G. Ergul, Soft filter, Mathematical Sciences, 8 (2014), 1-6. 2
- [13] I. Zorlutuna and H. Cakr, On Continuity of Soft Mappings, Applied Mathematics and Information Sciences, 9 (2015), 403-409. https://doi.org/10.12785/amis/090147 2.12