

General Letters in Mathematics (GLM)

Journal Homepage: http://www.refaad.com/views/GLM/home.aspx

On Nano S_β-Open Sets In Nano Topological Spaces

Osama T. Pirbal^{a,*}, Nehmat K. Ahmed^b

Abstract

The aim of this work is to introduce a new class of nano semi-open sets in nano topological spaces which called nano S_{β} -open sets in nano topological spaces. Also, we study the relationship between some types of nano near open sets with this new class. The class of nano S_{β} -open sets exactly lie between nano S_{p} -open sets and nano semi-open sets. ©2022 All rights reserved.

Keywords: Nano Topology, Nano semi-open sets, Nano β -open sets, Nano S_{β} -open sets.

2010 MSC: 54A05.

1. Introduction

The notion of nano topological space (briefly NTS) introduced by Thivagar and Carmel [1] with respect to a subset X of a universe; which is defined in terms of lower and upper approximations. Levine [2] introduced the notions of semi-open. Abd El-Monsef [3] introduced the notion of β -open sets in topology. Later, nano semi-open sets introduced by Thivagar Carmel [1], also nano β -open sets introduced by Revathy and lango [4]. During this work, we introduce the concept nano S_{β} -open sets as a strong form of nano semi-open sets, since every nano S_{β} -open sets is nano semi-open sets and the relationship with some class of nano near open sets. Various forms of family of nano S_{β} -open sets under various cases of approximations idea also derived.

2. Preliminaries

Definition 2.1. [5] A non-empy finite set U of objects called the universe and R is an equivalence relation on the set U named the indiscernibility relation. Elements which in the same equivalence class are called indiscernible with one another. The couple (U, R) is said to be the approximation space. Let $X \subseteq U$:

- 1. The lower approximation of X with respect to R denoted by $L_R(X)$ and defined by $L_R(X) = \bigcup_{x \in U} \{R(x); R(x) \subseteq X\}$, where R(x) denotes the equivalence class determined by x.
- 2. The upper approximation of X with respect to R denoted by $U_R(X)$ and defined by $U_R(X) = \bigcup_{x \in U} \{R(x); R(x) \cap X \neq \emptyset\}$.

Email addresses: osama.pirbal@su.edu.krd (Osama T. Pirbal), nehmat.ahmed@su.edu.krd (Nehmat K. Ahmed)

doi:10.31559/glm2022.12.1.3

^aDepartment of Mathematics, College of Education, Salahaddin University-Erbil, 44001, Erbil

^bDepartment of Mathematics, College of Education, Salahaddin University-Erbil, 44001, Erbil

^{*}Corresponding author

3. The boundary region of X with respect to R denoted by $B_R(X)$ and defined by $B_R(X) = U_R(X) - L_R(X)$.

Definition 2.2. [1] Suppose that U denote the universe and R is an equivalence relation on U and $\tau_R(X) = \{ \phi, U, L_R(X), U_R(X), B_R(X) \}$ where $X \subseteq U$. Then the following axioms hold for $\tau_R(X)$:

- 1. U and $\phi \in \tau_R(X)$
- 2. The union of members of $\tau_R(X)$ is in $\tau_R(X)$.
- 3. The finite intersection of members of $\tau_R(X)$ is in $\tau_R(X)$.

That is, $\tau_R(X)$ is a Topology on U and named the Nano Topology on the set U with respect to X. The pair $(U, \tau_R(X))$ called the NTS. The members of $\tau_R(X)$ are called nano open sets and $[\tau_R(X)]^c$ is called the nano dual topology of $\tau_R(X)$.

Definition 2.3. [4]

```
nint(A) = \bigcup \{G; G \in \tau_R(X) \text{ and } G \subseteq A\}
ncl(A) = \cap \{F; F \in [\tau_R(X)]^c \text{ and } A \subseteq F\}
```

Definition 2.4. Let $(U, \tau_R(X))$ be a NTS and $M \subseteq U$. The set M is said to be Nano:

- 1. regular-open [1], if M = nint(ncl(M)).
- 2. α -open [1], if $M \subseteq \min(\operatorname{ncl}(\min((M)))$.
- 3. semi-open [1], if $M \subseteq ncl(nint(M))$.
- 4. pre-open [1], if $M \subseteq nint(ncl(M))$.
- 5. γ -open [1], if $M \subseteq \min(\operatorname{ncl}(M)) \cup \operatorname{ncl}(\operatorname{nint}(M))$
- 6. β open (nano semi pre-open) [4], if $M \subseteq ncl (nint (ncl (M)))$.
- 7. S_P -open [6], if M is nano semi-open and $M = \bigcup \{F_\alpha; F_\alpha \text{ is nano pre-closed set}\}$.
- 8. $\delta\beta$ -open [7], if $M \subseteq ncl(nint(ncl^{\delta}(M)))$.
- 9. θ -open [8], if for each $x \in M$, there exists a nano open set G such that $x \in G \subseteq ncl(M) \subseteq M$.

The set of all Nano regular-open (resp. Nano α -open, Nano semi-open, Nano pre-open, Nano γ -open, Nano β -open, Nano θ -open, Nano δ_P -open and Nano δ_P -open sets denoted by nRO(U, X) (resp. $n\alpha O(U, X)$, nSO(U, X), nPO(U, X), $n\gamma O(U, X)$, $n\beta O(U, X)$, $n\theta O(U, X)$, $n\theta O(U, X)$ and $n\delta \beta O(U, X)$.

Definition 2.5. [6] A NTS (U, $\tau_R(X)$) is said to be:

- 1. Nano locally indiscrete space, if every nano-open set is nano closed.
- 2. A topological space is called extremally disconnected if the closure of any open subset is still an open subset.
- 3. Nano clopen if nint(A) = ncl(A).

Theorem 2.6. [1] Let $(U, \tau_R(X))$ be a NTS. if $U_R(X) = U$ and $L_R(X) \neq \varphi$, then φ , $U, L_R(X)$ and $B_R(X)$ are the only nS-open sets in a NTS U.

Theorem 2.7. [1] Let $(U, \tau_R(X))$ be a NTS. if $U_R(X) = U$ and $L_R(X) \neq \varphi$, then φ , $U, L_R(X)$ and $B_R(X)$ are the only $n\alpha$ -open sets in a NTS U.

Theorem 2.8. [1] Let $(U, \tau_R(X))$ be a NTS. If $U_R(X) \neq U$, $L_R(X) = \varphi$, then φ and those sets A for which $U_R(X) \subseteq A$ are the only $n\alpha$ -open sets in a NTS U.

Theorem 2.9. [1] Let $(U, \tau_R(X))$ be a NTS. If $U_R(X) = L_R(X) \neq U$, then φ and those sets A for which $U_R(X) \subseteq A$ are the only $n\alpha$ -open sets in a NTS U.

Theorem 2.10. [1] Let $(U, \tau_R(X))$ be a NTS. If $U_R(X) \neq U$ and $L_R(X) = \varphi$, then φ and those sets A for which $U_R(X) \subseteq A$ are the only nS-open sets in a NTS U.

Theorem 2.11. [1] Let $(U, \tau_R(X))$ be a NTS. If $U_R(X) = L_R(X) \neq U$, then φ and those sets A for which $L_R(X) \subseteq A$ are the only nS-open sets in a NTS U.

Theorem 2.12. [1] Let $(U, \tau_R(X))$ be a NTS. If $U_R(X) \neq L_R(X)$ where $U_R(X) \neq U$ and $L_R(X) \neq \varphi$, then φ , $L_R(X)$, $B_R(X)$ and any set containing $U_R(X)$, $L_R(X) \cup W$ and $B_R(X) \cup W$ where $W \subseteq [U_R(X)]^c$ are the only nS-open sets in a NTS U.

Theorem 2.13. [1] The union of any two nS-open sets in U is nS-open sets in a NTS U.

Theorem 2.14. [4] In a NTS (U, $\tau_R(X)$), the following statements are true:

- 1. Every nano-open set in (U, $\tau_R(X)$) is $n\beta$ -open set in a NTS U.
- 2. Every nS-open set in (U, $\tau_R(X)$) is n β -open set in a NTS U.
- 3. Every nP-open set in $(U, \tau_R(X))$ is n β -open set in a NTS U.
- 4. Every $n\alpha$ -open set in $(U, \tau_R(X))$ is $n\beta$ -open set in a NTS U.
- 5. Every nR-open set in (U, $\tau_R(X)$) is n β -open set in a NTS U.

Theorem 2.15. [4] The union of any two nβ-open sets is nβ-open set in a NTS U.

Theorem 2.16. [4] If $U_R(X) \neq U$, then φ , U and any set which intersect $U_R(X)$ are $n\beta$ -open set in a NTS U.

Theorem 2.17. [4] If $U_R(X) = U$ in a NTS, then $n\beta O(X)$ is P(U).

Theorem 2.18. Let $(U, \tau_R(X))$ be a NTS when $U_R(X) = L_R(X) \neq U$ and $U_R(X) = \{x\}$, $x \in U$, then φ , $U \neq A \in \mathfrak{n}\beta C(U,X)$ if and only if $U_R(X) \cap A = \varphi$.

Proof. Let ϕ , $U \neq A \in \mathfrak{n}\beta C(U,X)$ if and only if A^c is $\mathfrak{n}\beta$ -open set if and only if $A^c \cap U_R(X) \neq \phi$, that is A^c containing x, since $U_R(X) = \{x\}$, so that $A \cap U_R(X) = \phi$.

Theorem 2.19. [6] Let $(U, \tau_R(X))$ be a nano topological space, then the following statements hold:

- 1. If $M \in n\theta O(U, X) \Rightarrow M \in n\delta O(U, X)$.
- 2. *if* $M \in nRC(U, X) \Rightarrow M \in nSO(U, X) \cap nPO(U, X)$.
- 3. If $M \in \mathfrak{n}\theta O(U, X) \Rightarrow M \in \mathfrak{n}S_{\mathfrak{p}}O(U, X)$.
- 4. If $M \in n\theta O(U, X) \cap nSO(U, X) \Rightarrow M \in nS_pO(U, X)$.
- 5. If $M \in nRC(U, X) \Rightarrow M \in nS_pO(U, X)$.
- 6. If $M \in \mathfrak{nS}_pO(U,X) \Rightarrow M \in \mathfrak{nSO}(U,X)$.

Theorem 2.20. [7] Every $n\beta$ -open is $n\delta\beta$ -open.

3. Nano S_{β} -Open Sets

Definition 3.1. A nano semi-open set A of a NTS $(U, \tau_R(X))$ is said to be nano S_β-open set, if for each $x \in A$, there exist a nano β-closed set F such that $x \in F \subseteq A$. The set of all nano S_β-open sets denoted by $nS_\beta O(U, X)$.

Definition 3.2. The complement of nS_{β} -open sets are called nano S_{β} -closed sets. The set of all nano S_{β} -closed sets denoted by $nS_{\beta}C(U,X)$.

Proposition 3.3. *If* $A \in \mathfrak{nS}_{\beta}O(U, X)$, then $A \in \mathfrak{nSO}(U, X)$.

Proof. Follows from Definition 3.1

Remark 3.4. The Proposition 3.3 Shows that every nS_{β} -open set is nS-open set, but the converse may no be true general, as it shown in the next example.

Example 3.5. Let $U = \{a, b, c\}$ with $U/R = \{\{a\}, \{b, c\}\}$ and $X = \{a\}$, then $\tau_R(X) = \{\phi, U, \{a\}\}$ and $nS_\beta O(U, X) = \{\phi, U\}$. Consider the set $\{a\} \in nSO(U, X)$ but not in $nS_\beta O(U, X)$.

Proposition 3.6. A subset A of a NTS (U, $\tau_R(X)$) is nS_{β} -open set if and only if A is nS-open and the union of $n\beta$ -closed sets in a NTS.

Proof. Follows from Definition 3.1.

Proposition 3.7. *If* $\{A_i; i \in \Delta\}$ *is a family of* nS_{β} -open sets in a NTS $(U, \tau_R(X))$, then $\cup \{A_i; i \in \Delta\}$ is also nS_{β} -open set.

Proof. Let $\{A_i; i \in \Delta\}$ be a family of nS_{β} -open sets, by Proposition 3.3 and Theorem 2.13, the for each $x \in \cup A_i \subseteq nSO(U, X)$, there exists $n\beta$ -closed set such that $x \in F \subseteq A_i \subseteq \cup A_i$. This implies that $x \in F \subseteq \cup A_i$. Therefore, $\cup \{A_i; i \in \Delta\}$ is also nS_{β} -open set.

Remark 3.8. The intersection of two nS_{β} -open sets in a NTS U, may not be nS_{β} -open set in general, as it shown in the next example.

Example 3.9. Let $U = \{a, b, c, d\}$ with $U/R = \{\{a, b\}, \{c\}, \{d\}\}\}$ and $X = \{a, c\}$. Then $\tau_R(X) = \{\phi, U, \{c\}, \{a, b, c\}, \{a, b\}\}\}$ and $nS_\beta O(U, X) = \{\phi, U, \{c\}, \{a, b\}, \{c, d\}, \{a, b, d\}, \{a, b, c\}\},$ then $\{c, d\}$ and $\{a, b, d\}$ are nS_β -open sets, but $\{c, d\} \cap \{a, b, d\} = \{d\}$ which is not nS_β -open set in U.

Remark 3.10. Class of $nS_{\beta}O(U, X)$ is supra topology on U.

Theorem 3.11. If A_1 , $A_2 \in nS_\beta O(U,X)$ and nSO(U,X) forms a nano topology on U, then $A_1 \cap A_2 \in nS_\beta O(U,X)$ and $nS_\beta O(U,X)$ forms a nano topology on U.

Proof. Suppose that $A_1, A_2 \in nS_\beta O(U, X)$ and nSO(U, X) forms a nano topology on U. By Proposition 3.3, A_1, A_2 are in nSO(U, X) and nSO(U, X) forms a nano topology, then $A_1 \cap A_2 \in nSO(U, X)$. Let $x \in A_1 \cap A_2$, then $x \in A_1$ and $x \in A_2$. So there exist $n\beta$ -closed sets F_1 and F_2 such that $x \in F_1 \subseteq A_1$ and $x \in F_1 \subseteq A_2$. Hence $x \in F_1 \cap F_2$, and by Theorem 2.15, the intersection of two $n\beta$ -closed sets is $n\beta$ -closed set, it follows that $A_1 \cap A_2$ is nS_β -open. Therefore, the collection of $n\beta$ -open sets form a nano topology on U. □

Remark 3.12. The concept of nano-open sets and nS_{β} -open sets are independent in general. From Example 3.5, $\{a\} \in \tau_R(X)$, but $\{a\} \notin nS_{\beta}O(U,X)$. Also, form Example 3.9, $\{c, d\} \in nS_{\beta}O(U,X)$, but $\{c, d\} \notin \tau_R(X)$.

Theorem 3.13. Let $(U, \tau_R(X))$ be a NTS, then the following statements are true:

- 1. If $A \in \mathfrak{nS}_pO(U, X) \Rightarrow A \in \mathfrak{nS}_BO(U, X)$.
- 2. If $A \in n\theta O(U, X) \Rightarrow A \in nS_{\beta}O(U, X)$.
- 3. If $A \in nRC(U, X) \Rightarrow A \in nS_{\beta}O(U, X)$.
- 4. If $A \in nRO(U, X) \Rightarrow A \in nS_{\beta}C(U, X)$.
- 5. If $A \in n\theta O(U, X) \cap nSO(U, X) \Rightarrow A \in nS_{\beta}O(U, X)$.

Proof.

- 1. Suppose that A is nS_P -open set, then there exists a nP-closed set F such that $F \subseteq A$ for each x in A. By Theorem 2.14 (3), A is nS_P -closed set such that $F \subseteq A$ for each x in A. Hence A is nS_P -open set.
- 2. Suppose that A is $n\theta$ -open set, then by Theorem 2.19 (3), F is also nS_p -open set, by Part (1), A is nS_{β} -open set.
- 3. Suppose that A is nR-closed set, that is A = ncl(nint(A)), but $A \subseteq ncl(nint(A))$, it is implies that A is nS-open set. The set A is nR-closed, then A^C is nR-open set, by Theorem 2.14 (4), we get A^C is nB-open set, that is A is nB-closed set. Now, A is nS-open set and also nB-closed. Thus, A is nS_{\beta}-open set.
- 4. It follows form part (3).

5. Suppose that $A \in n\theta O(U, X) \cap nSO(U, X)$, then by Theorem 2.19 (5), A is nS_p -open set, then by Part (1), A is nS_{β} -open set.

Remark 3.14. The converse of each part of above Theorem 3.13 may not be true in general, as it shown in the next example.

Example 3.15. Let U={a, b, c, d} with U/R={{a}, {b, c}, {d}} and X={a, b}. Then $\tau_R(X) = \{\varphi, U, \{a\}, \{b, c\}, n\theta O(U, X) = \{\varphi, U\}, nRO(U, X) = \{\varphi, U, \{a\}, \{b, c\}\}, nS_PO(X) = \{\varphi, U, \{a, d\}, \{b, c\}, \{b, c, d\}\} and nS_βO(X) = nSO(U, X). Take A = {a}, then A is nS_β-open but not nS_P-open set. Take B = {a, d}, then B is nS_β-open set but {a, d} ∉ nθO(U, X). Take C = {b, c}, then C is nS_β-open but not nR-closed in U. Take D = {a, d}, then D is nS_β-open set but {a, d} ∉ nθO(U, X) ∩ nSO(U, X).$

Proposition 3.16. *If a* NTS (U, $\tau_R(X)$) *is locally indiscrete, then every* nS-open set is nS $_{\beta}$ -open set.

Proof. Let A be a nS-open set in U, then $A \subseteq \text{nint}(\text{ncl}(A))$. Since U is locally indiscrete, then nint(A) is nano closed set and hence nint(A) = ncl(A) which it means that A is nR-closed in U. Therefore, by Theorem 3.13 (1), A is nS_{β} -open set.

Remark 3.17. Let $A \subseteq U$. If $A \in nS_BO(U, X)$ and A is the union of nP-closed sets, then $A \in nS_DO(U, X)$.

Theorem 3.18. Let $(U, \tau_R(X))$ be a NTS, then the following statements are true:

- 1. Every nS_{β} -open set is $n\gamma$ -open set.
- 2. Every nS_{β} -open set is $n\beta$ -open set.
- 3. Every nS_{β} -open set is $n\delta\beta$ -open set.

Proof.

- 1. Suppose that A is nS_{β} -open set, then by Proposition 3.3, A is nS-open set, hence $A \subseteq nint(cl(A)) \cup ncl(nint(A))$.
- 2. Suppose that A is nS_{β} -open set, then by Proposition 3.3, A is nS-open set, then by Theorem 2.14 (2), A is $n\beta$ -open set.
- 3. Suppose that A is nS_{β} -open set, then by part (2), A is $n\beta$ -open set, by Theorem 2.20, A is $n\delta\beta$ -open set.

Remark 3.19. The converse of each part of above Theorem 3.18 is not true in general, as it shown in the following examples.

Example 3.20. Let $U=\{\alpha, b, c\}$ with $U/R=\{\{\alpha\}, \{b, c\}\}$ and $X=\{\alpha\}$, then $\tau_R(X)=\{\varphi, U, \{\alpha\}\}$. The nano γ -open sets are $\{\varphi, U, \{\alpha\}, \{\alpha, b\}, \{\alpha, c\}\}$ and $nS_{\beta}O(X)=\{\varphi, U\}$. Consider at least the set $\{\alpha\}$ is γ -open set but not nS_{β} -open set.

Example 3.21. Let $U = \{a, b, c, d\}$ with $U/R = \{\{a, b\}, \{c\}, \{d\}\}$ and $X = \{a, c\}$. Then, $\tau_R(X) = \{\varphi, U, \{c\}, \{a, b, c\}, \{a, b\}\}, nSO(X) = \{\varphi, U, \{c\}, \{a, b\}, \{c, d\}, \{a, b, d\}, \{a, b, c\}\}, nSO(X) = P(U) - \{d\}$, then $nS_{\beta}O(X) = \{\varphi, U, \{c\}, \{a, b\}, \{c, d\}, \{a, b, d\}, \{a, b, c\}\}$. Consider $\{b, c\} \in nSO(X)$, but $\{b, c\} \notin nSO(X)$. Also, $\{b, c\} \in nSO(X)$, but $\{b, c\} \notin nSO(X)$.

Example 3.22. Let $U = \{a, b, c, d\}$ with $U/R = \{\{a, b\}, \{c\}, \{d\}\}$ and $X = \{c, d\}$, then $\tau_R(X) = \{\phi, U, \{c, d\}\}$. $A = \{b\}$ is $n\delta\beta$ -open set but not nS_β -open set.

Proposition 3.23. *In a* NTS $(U, \tau_R(X))$ *if* $\tau_R(X)$ (resp. nSO (U, X)) = $\{\varphi, U\}$, then nS $_{\beta}$ O $(U, X) = \{\varphi, U\}$.

Proof. Clear.

Remark 3.24. The converse of above Proposition 3.23 may not to be true in general. That is, if $nS_{\beta}O(U, X) = \{\phi, U\}$ is does not mean $nSO(U, X) = \{\phi, U\}$, as it is clear in Example 3.5.

4. Family of Nano \mathfrak{nS}_{β} Open Sets in Term of $U_R(X)$, $L_R(X)$ and $B_R(X)$

In this section, we consider nS_{β} -open sets by study of $U_R(X)$, $L_R(X)$ and $B_R(X)$ approximations with respect to X. In this view, we can easily find nS_{β} -open sets in NTSs.

Theorem 4.1. Suppose that $U_R(X) = U$ and $L_R(X) \neq \varphi$ in a NTS $(U, \tau_R(X))$, then $\tau_R(X) = \tau_R^S(X) = \tau_R^{S_\beta}(X) = \tau_R^{S_\beta}(X)$.

Proof. Suppose that $U_R(X)=U$ and $L_R(X)\neq \varphi$, then $\tau_R(X)=\{\varphi,\ U,\ L_R(X),\ B_R(X)\}$. Then by Theorem 2.17, $n\beta O(X)=P(U)$. Then $n\beta C(U,X)=P(U)$ but $nSO(U,X)\subseteq P(U)=n\beta C(U,X)$, so $nSO(U,X)=nS_\beta O(U,X)$, then by Theorem 2.6 and Theorem 2.10, we get $\tau_R(X)=\tau_R^S(X)=\tau_R^S(X)=\tau_R^\alpha(X)$.

Theorem 4.2. Suppose that $U_R(X) = U$ and $L_R(X) = \varphi$ in a NTS $(U, \tau_R(X))$, then $\tau_R(X) = nS_\beta O(U, X) = \{U, \varphi\}$.

Proof. If $U_R(X) = U$ and $L_R(X) = \varphi$, then $\tau_R(X) = \{\varphi, U\}$. Then by Proposition 3.23, $\pi S_\beta O(U, X) = \{U, \varphi\}$.

Theorem 4.3. Suppose that $(U, \tau_R(X))$ is a NTS. Let M and N be two nS_β -open set, then $M \cap N$ is nS_β -open in a NTS if $L_R(X) \neq \varphi$ and $U_R(X) = U$.

Proof. Follows from Preposition 4.1.

Theorem 4.4. Suppose that $(U, \tau_R(X))$ is a NTS. If $U_R(X) = L_R(X) \neq U$ and $U_R(X) = \{x\}$, $x \in U$, then $nS_\beta O(U, X) = \{\phi, U\}$.

Proof. Suppose that $U_R(X) = L_R(X) \neq U$ and $U_R(X) = \{x\}$, $x \in U$, then $\tau_R(X) = \{\phi, U, \{x\}\}$. By Theorem 2.11, ϕ and those sets A for which $L_R(X) \subseteq A$ are the only nS-open sets in U, so all nS-open sets contains x, but by Theorem 2.16, ϕ , U and any set which intersect $U_R(X)$ are $n\beta$ -open set in U, then by Theorem 2.18, any proper subset which contains $U_R(X) = \{x\}$ is not $n\beta$ -closed set in U, but since all nS-open set contains x and there is no $n\beta$ -closed set containing x, hence $nS_{\beta}O(U,X) = \{\phi, U\}$. □

Theorem 4.5. Suppose that $U_R(X) \neq U$ in a NTS $(U, \tau_R(X))$. If M is nS-open set and $M^C \cap U_R(X) \neq \phi$, then M is nS_{\beta}-open set in a NTS U.

Proof. Let $U_R(X) \neq U$ and M be a nS-open set such that $M^C \cap U_R(X) \neq \emptyset$. Then by Theorem 2.16, M^c is nβ-open set in U, then M is nβ-closed set. Hence M is nS_β-open set in a NTS U.

Theorem 4.6. (U, $\tau_R(X)$) be a NTS. If $U_R(X) = L_R(X) \neq U$ and $U_R(X)$ contains more than one element of U, then φ and those sets M for which $U_R(X) \subseteq M$ are the only nS_{β} -open sets in NTS U.

Proof. Suppose that $U_R(X) = L_R(X) \neq U$ and $U_R(X)$ contains more than one element of U. By Theorem 2.11, φ and those sets M which $U_R(X) \subseteq M$ are the only nS-open sets in U. Let M is nS-open set, then $U_R(X) \subseteq M$. Let $X \in M$, then:

Case1. If $x \in U_R(X) \subseteq M$, by Theorem 2.16, $\{x\}$ is $n\beta$ -open, since $\{x\} \cap U_R(X) \neq \varphi$, then $\{x\}^c \cap U_R(X) \neq \varphi$, since $U_R(X)$ contains more than one element of U. Hence $\{x\}^c$ is $n\beta$ -open, so its complement $\{x\}$ is $n\beta$ -closed. Thus, $x \in \{x\} \subseteq M$.

Case2. If $x \notin U_R(X) \subseteq M$, then $\{x\} \cap U_R(X) = \phi$, then $\{x\}^c \cap U_R(X) \neq \phi$, so $\{x\}^c$ is $n\beta$ -open set, then its complement $\{x\}$ is $n\beta$ -closed set. Thus, $x \in \{x\} \subseteq M$.

Therefore, ϕ and those sets M which $U_R(X) \subseteq M$ are the only nS_{β} -open sets in a NTS U.

Theorem 4.7. Suppose that $(U, \tau_R(X))$ is a NTS. If $U_R(X) \neq U$, $L_R(X) = \varphi$ and $U_R(X)$ contains more than one element of U, then φ and those sets M for which $U_R(X) \subseteq M$ are the only nS_{β} -open sets in a NTS U.

Proof. $\tau_R(X) = \{\phi, U, U_R(X)\}\$, then the proof similar with Theorem 4.6.

Theorem 4.8. Suppose that $(U, \tau_R(X))$ be a NTS. Let M and N are two nS_β -open sets in U, then $M \cap N$ is nS_β -open if $U_R(X) = L_R(X) \neq U$ and $U_R(X)$ contains more than one element of NTS U.

Proof. Suppose that $U_R(X) = L_R(X) \neq U$ and $U_R(X)$ contains more than one element of a NTS U, then by Theorem 4.6, φ and any set containing $U_R(X)$ is \mathfrak{nS}_β -open set. If M or N = φ , then the result is clear. Let M and N $\neq \varphi$ be \mathfrak{nS}_β -open sets in NTS U, then $U_R(X) \subseteq M$ and $U_R(X) \subseteq N$ and hence $U_R(X) \subseteq M \cap N$. Thus, $M \cap N$ is \mathfrak{nS}_β -open set in NTS U.

Theorem 4.9. Suppose that $(U, \tau_R(X))$ is a NTS. If M and N are two nS_{β} -open set, then $M \cap N$ is nS_{β} -open if $U_R(X) \neq U$, $L_R(X) = \varphi$ and $U_R(X)$ contains more than one element of a NTS U.

Proof. The proof similar to Theorem 4.8.

Theorem 4.10. Let $(U, \tau_R(X))$ be a NTS. If $L_R(X) \neq U_R(X)$ where $U_R(X) \neq U$ and $L_R(X) \neq \varphi$, then φ , $L_R(X)$, $B_R(X)$ and any set containing $U_R(X)$, $L_R(X) \cup W$ and $B_R(X) \cup W$ where $W \subseteq [U_R(X)]^c$ are the only nS_β -open sets in a NTS U.

Proof. $\tau_R(X) = \{\varphi, U, U_R(X), L_R(X), B_R(X)\}$. It is clear $U_R(X)$ contains more than one point of U. By Theorem 2.12, φ , $L_R(X)$, $B_R(X)$ and any set containing $U_R(X)$, $L_R(X) \cup W$ and $B_R(X) \cup W$ where $W \subseteq [U_R(X)]^c$ are the only nS-open sets in NTS U. Since $U_R(X)$ intersect any proper subset with less than one point of U, say G, so by Theorem 2.16, G is nβ-open set and its complement is singleton nβ-closed, that is, for any $x \in U$, $\{x\} \in n\beta C(U,X)$, then by Proposition 3.6, any nS-open set is nS_β-open set. Therefore, φ , $L_R(X)$, $B_R(X)$ and any set containing $U_R(X)$, $L_R(X) \cup W$ and $B_R(X) \cup W$ where $W \subseteq [U_R(X)]^c$ are the only nS_β-open sets in a NTS U.

Theorem 4.11. Let A be a subset of a NTS (U, $\tau_R(X)$). If A is nono clopen, then A is nS_β clopen in a NTS U.

Proof. Suppose that G is a subset of NTS U which is nano clopen in U. Then nint(G) = ncl(G) and $G \subseteq ncl(nint(ncl(G)))$. Hence, G is nβ-open. Let $K = G^c$, then K is nβ-closed. Since G is nano clopen, K is also nano clopen. So $K \subseteq ncl(nint(ncl(K)))$ and thus K is nβ-open. Hence $G = K^c$ is nβ-closed. Hence, G and K are nβ-clopen in U. Again, G and K are nS-open as G and K both are nano open. Therefore, for nS-open set G, and for each $x \in G$ there exists a nβ-closed set G such that $x \in G \subseteq G$. Thus, G is nS_β-open. By similar argument $K = G^c$ is nS_β-open.

Theorem 4.12. Let $(U, \tau_R(X))$ be a NTS. If $U_R(X) \neq U$, $L_R(X) = \varphi$ and $U_R(X)$ contains more than one point of U, then $nS_\beta O(U, X) = n\alpha O(U, X)$.

Proof. Follows from Theorem 2.11 and Theorem 4.7.

Theorem 4.13. Let $(U, \tau_R(X))$ be a NTS. If $U_R(X) = L_R(X) \neq U$ and $U_R(X)$ contains more than one point of U, then $nS_\beta O(U, X) = n\alpha O(U, X)$.

Proof. Follows form Theorem 2.8 and Theorem 4.6.

References

- [1] M. L. Thivagar, C. Richard, *On nano forms of weakly open sets*, International journal of mathematics and statistics invention, 1 (2013),31-37. 1, 2.2, 1, 2, 3, 4, 5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13
- [2] N. Levine, Semi-open sets and semi-continuity in topological spaces, The American mathematical monthly, **70** (1963), 36-41.
- [3] M. Abd El-Monsef, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90. 1
- [4] A. Revathy and G. Ilango, *On nano* β-open sets, Int. J. Eng. Contemp. Math. Sci., **1** (2015), 1-6. 1, 2.3, 6, 2.14, 2.15, 2.16, 2.17
- [5] Z. Pawlak, Rough sets, International journal of computer and information sciences, 11 (1982), 341-356. 2.1

- [6] D. Saravanakumar, T. Sathiyanandham, and V. Shalini, *NSP-open sets and NSP-closed sets in nano topological spaces*, International Journal of Pure and Applied Mathematics, **113** (2017), 98-108. 7, 2.5, 2.19
- [7] M. Hosny, Nano $\delta\beta$ -open sets and nano $\delta\beta$ -continuity, Journal of the Egyptian Mathematical Society, **26** (2018), 365-375. 8, 2.20
- [8] M. L. Thivagar and C. Richard, Note on nano topological spaces, communicated. 9